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Ehresmann connections, metrics

and good metric derivatives

Rezső L. Lovas, Johanna Pék and József Szilasi

Abstract.

In this survey we approach some aspects of tangent bundle geom-
etry from a new viewpoint. After an outline of our main tools, i.e.,
the pull-back bundle formalism, we give an overview of Ehresmann
connections and covariant derivatives in the pull-back bundle of a tan-
gent bundle over itself. Then we define and characterize some special
classes of generalized metrics. By a generalized metric we shall mean a
pseudo-Riemannian metric tensor in our pull-back bundle. The main
new results are contained in Section 5. We shall say, informally, that
a metric covariant derivative is ‘good’ if it is related in a natural way
to an Ehresmann connection determined by the metric alone. We shall
find a family of good metric derivatives for the so-called weakly normal
Moór – Vanstone metrics and a distinguished good metric derivative for
a certain class of Miron metrics.
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§1. Introduction

The background philosophy behind this paper is very simple: Finsler
metrics are special pseudo-Riemannian metrics in a special vector bun-
dle. The special character of the metric means variationality above all:
it is the Hessian of a Lagrangian which is defined on an appropriate open
submanifold T̃M of the tangent manifold TM of a base manifold M . If
τ is the natural projection of TM onto M , we require that τ

(
T̃M

)
= M ,

and we formulate the theory in the pull-back bundle π∗τ , π := τ � T̃M .
We arrive at the most important special case when T̃M is the split

manifold
◦
TM := ∪

p∈M
(TpM \ {0p}) and

◦
τ := τ �

◦
TM .
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As to the scene of the theory, there is no consensus among geometers:
at least three other approaches are also in current use. In them we find
the following basic geometric setups:

– the tangent bundle τTM : TTM → TM ,
– the vertical subbundle τv

TM of τTM ,
– the pull-back of the frame bundle associated with τ : TM → M

over τ .

The first approach was initiated by Joseph Grifone [16, 17], for later
use see e.g. [39, 41]. Compared with the other formulations, the world
is duplicated in a non-canonical way: T vTM occurs as a fibrewise
n(= dim M)-dimensional direct summand in TTM , and its comple-
mentary subbundle, called a horizontal subbundle, depends on another
structure. However, in the presence of a Finsler structure a horizon-
tal subbundle may be specified in a natural manner. In all certainty
Grifone’s main motivation in the extension of τv

TM was the intention of
using the Frölicher –Nijenhuis calculus of vector-valued forms. In τTM

this formalism is applicable without any difficulty, and provides an ex-
tremely concise and transparent formulation of the underlying geometric
ideas. At the same time it serves as a powerful tool for calculations.

The second approach (scene the vertical bundle) is followed e.g. in
the books [1, 5]. However, when the torsion of a covariant derivative
operator in τv

TM is treated, the operator in both books is extended to
the whole τTM using a horizontal structure.

The third approach first appeared in a paper of Louis Auslander
[3], but it was elaborated in full detail by Makoto Matsumoto [28, 29].
Here the basic geometric setup is a (special) principle bundle, and for
the treatment of Finsler connections the whole machinery of the theory
of principal connections is available.

Why have we chosen the pull-back bundle framework? In our prac-
tice we have gained experience about all the three other formulations
of the theory. We extremely enjoyed the elegance and efficiency of the
Frölicher –Nijenhuis formalism in τTM . However, Mike Crampin’s pa-
per ‘Connections of Berwald type’ [10] made a strong impression on
us. When we realized that a convenient intrinsic calculus is also avail-
able in this framework, and found that the advantages of the Frölicher –
Nijenhuis calculus may be preserved as well, we made our choice in
favour of the π∗τ -formalism. The third author’s comprehensive study
[40] has already originated in the spirit of this philosophy.

Our decision is rather typical than exceptional. The pull-back bun-
dle

◦
τ∗τ is the main scene of the theory in the delightful textbook
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of D. Bao, S.-S. Chern and Z. Shen [4]. This approach was conse-
quently used by H. Akbar-Zadeh in his works (see e.g. [2]), as well as
in B. T. Hassan’s excellent Thesis [20]. Mention should be made of Pe-
ter Dombrowski’s brilliant review [13], in which he translated a paper
of M. Matsumoto from the principal bundle formalism into the pull-
back formalism. Dombrowski’s review inspired a remarkable paper of
Z. I. Szabó [38].

In this work we need only a modest algebraic-analytical formalism.
We shall apply from beginning the canonical v-covariant derivative in
π∗τ . This is a possible intrinsic formulation of ‘the well known fact that
the partial differentiation of components of a tensor field by yi gives rise
to a new tensor field, as it has been noticed since the early period of
Finsler geometry’ ([29], p. 59; the yi’s mean fibre coordinates).

As in any vector bundle, covariant derivative operators are at our
disposal also in π∗τ . Their torsion(s) may be defined without any arti-
ficial extension process, using only canonical bundle maps arising in the
short exact sequence (called the basic exact sequence) made from π∗τ
and τ

T̃M
.

Ehresmann connections (called also nonlinear connections) are fur-
ther indispensable tools in the formulation of the theory, but they also
deserve attention in their own right. The importance of ‘nonlinear con-
nections’ for the foundation of Finsler geometry was first emphasized
by A. Kawaguchi [23], but their systematic use in this context is due to
M. Matsumoto. Recently Ehresmann connections have been applied to
model the constraints in the mechanics of nonholonomic systems [6].

There are several equivalent possibilities to introduce the concept
of Ehresmann connections. We define an Ehresmann connection as a
splitting H of our basic exact sequence; then ImH is a complementary
subbundle to T vTM , i.e., a horizontal subbundle. Strictly speaking, an
Ehresmann connection is also required to be complete in the sense that
horizontal lifts of complete vector fields on M are always complete vector
fields on TM (see e.g. [14, 32]), but we shall not need this additional
assumption.

Via linearization, an Ehresmann connection induces a covariant de-
rivative operator in π∗τ , the Berwald derivative, which acts in vertical di-
rections as the canonical v-covariant derivative. In terms of the Berwald
derivative, the basic geometric data (tension, torsions, curvature) may
be defined or/and characterized.

Of course, all the material collected here concerning Ehresmann con-
nections can be found (possibly sporadically) in the literature, or is well-
established folklore. However, our presentation may provide some new
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insight, and it is adapted to the special demands of the treatment of
(generalized) Finsler stuctures.

Having clarified the scene and the basic tools, we have to face a
further question: why generalized Finsler structures at all? Since the age
of Poincaré, there has been a standard answer to this type of question:
in a more general setting it becomes clearer and more transparent what
some facts depend on. Although nowadays it is a cliché, it remains
true. We found again and again that some results concerning generalized
metrics can be proved without any extra effort, while to obtain others we
have to impose fine conditions, which, being satisfied automatically, are
imperceptible in the standard Finslerian setup. To our best knowledge
Masao Hashiguchi was the first who identified Finsler metrics among
generalized metrics by the elegant condition of normality [19].

There is also a more practical reason of the investigation of general-
ized metrics. It turned out that the requirement of variationality is too
restrictive for some important physical theories. As it was noticed first
by J. Horváth and A. Moór [21], generalized metrics provide a natural
framework for the so-called bilocal field theory initiated by H. Yukawa
in the 1940s. Generalized metrics proved to be useful also in relativistic
optics [35].

Riemannian (and pseudo-Riemannian) geometry enjoys the miracle
of the existence of a unique distinguished metric derivative, the Levi-
Civita derivative. Cartan’s derivative in Finsler geometry also realizes
such a miracle. However, this ‘deus ex machina’ does not work for the
whole class of generalized metrics. There is quite a universal construc-
tion, discovered by Radu Miron for a special class of metrics [33], which
produces a ‘nice’ metric derivative starting from a metric and an Ehres-
mann connection. In the Finslerian case one can obtain in this way
Cartan’s derivative. In general, however, it is very difficult to find (even
if it exists) an Ehresmann connection which depends only on the metric
and is ‘nicely related’ to the covariant derivative operator. In this paper
we investigate and solve this problem for two special classes of general-
ized metrics: for the class of so-called weakly normal Moór –Vanstone
metrics and the class of positive definite Miron metrics.

Acknowledgement
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seminar organized by the third author a couple of years ago in Debrecen.
This proved to be fruitful for the formulation of subsections 3.6 and 3.8
of the paper.
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§2. Framework and tools

2.1. Notation
Throughout this paper 1H denotes the identity map of a set H . If

ϕ : H → U and ψ : H → V are two maps, we denote by (ϕ, ψ) the map
H → U × V given by

a ∈ H �→ (ϕ, ψ)(a) := (ϕ(a), ψ(a)) ∈ U × V .

The product ϕ1 × ϕ2 of two maps ϕ1 : H1 → U1, ϕ2 : H2 → U2

is given by (ϕ1 × ϕ2)(a1, a2) := (ϕ1(a1), ϕ2(a2)); it maps H1 × H2 into
U1 × U2.

The symbols N∗ and R denote the positive integers and the reals.

2.2. Conventions and basic technicalities
(1) M will stand once and for all for an n-dimensional (n ∈ N∗)

smooth manifold whose topology is Hausdorff, second count-
able and connected. C∞(M) is the R-algebra of smooth func-
tions on M . A smooth map ϕ : M → N between manifolds M
and N is called a diffeomorphism if it has a smooth inverse.

(2) By an (r-)vector bundle over a manifold M we mean a smooth
map π : E → M such that

(i) each π−1(p), p ∈ M , is an r-dimensional real vector
space;

(ii) for each p ∈ M there is a neighbourhood U of p in M
and a diffeomorphism ϕ : U × Rr → π−1(U) ⊂ E such
that for each q ∈ U , the map

v ∈ Rr �→ ϕ(q, v) ∈ π−1(q)

is a linear isomorphism.
Terminology: M is the base manifold, E the total manifold, π
the projection, Ep := π−1(p) the fibre over p, Rr is the standard
fibre, and ϕ is a bundle chart of the vector bundle.

If π′ : E′ → M ′ is a second vector bundle, then a bundle
map from π to π′ is a smooth map ϕ : E → E′ that restricts
to linear maps

ϕp : Ep → E′
ψ(p), p ∈ M.

The correspondence p ∈ M �→ ψ(p) ∈ M ′ defines a smooth
map ψ : M → M ′. If M ′ = M and ψ = 1M , then ϕ is called a
strong bundle map.
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A section of π : E → M is a smooth map σ : M → E such
that π ◦ σ = 1M . The set Γ(π) of all sections of π is a module
over C∞(M) under the pointwise addition and multiplication
by functions in C∞(M).

(3) The tangent bundle of M is the n-vector bundle τ : TM → M
whose fibre at p ∈ M is the tangent space TpM . We recall that
TpM is the space of linear maps v : C∞(M) → R which satisfy
v(fg) = v(f)g(p) + f(p)v(g); f, g ∈ C∞(M). The vertical lift
of a function f ∈ C∞(M) to TM is fv := f ◦ τ ∈ C∞(TM),
and the complete lift of f to TM is the smooth function

f c : TM → R, v �→ f c(v) := v(f).

The tangent bundle of TM is τTM : TTM → TM . We denote

by
◦
TM the open subset of the nonzero tangent vectors to M .

◦
τ := τ �

◦
TM :

◦
TM → M is the deleted bundle for τ , and its

tangent bundle is τ◦
TM

: T
◦
TM →

◦
TM .

The tangent map of a smooth map ϕ : M → N is the
bundle map ϕ∗ : TM → TN whose restriction to TpM is given
by

(ϕ∗)p(v)(h) := v(h ◦ ϕ), h ∈ C∞(N).

(4) A vector field on M is a section of τ : TM → M ; the module
of all vector fields on M will be denoted by X(M). Any vector
field X ∈ X(M) may be interpreted as a differential operator
on C∞(M) by the rule

f ∈ C∞(M) �→ Xf ∈ C∞(M); Xf(p) := X(p)(f), p ∈ M.

This interpretation makes X a derivation on the ring C∞(M)
and leads to a very convenient definition of the bracket [X, Y ]
of two vector fields X, Y ∈ X(M): this is the unique vector
field sending each f ∈ C∞(M) to X(Y f)−Y (Xf). Under the
bracket operation, X(M) becomes a real Lie algebra.

The complete lift of a vector field X ∈ X(M) to TM is the
vector field Xc ∈ X(TM) characterized by

Xcf c := (Xf)c, f ∈ C∞(M).

Typical vector fields on TM will be denoted by Greek let-
ters ξ, η, . . . .

(5) By definition, a covariant and a vectorvariant tensor field
(briefly tensor) of degree k ∈ N∗ on M is, respectively,
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a C∞(M)-multilinear map A : (X(M))k → C∞(M) and
B : (X(M))k → X(M). Then A is also called a type (0, k),
while B a type (1, k) tensor field. If T is a (covariant or vec-
torvariant) tensor field of degree k on M , then its contraction
iXT by X ∈ X(M) is the tensor field of degree k − 1 given by
(iXT )(X2, . . . , Xk) := T (X, X2, . . . , Xk).

(6) One-forms on M are the objects dual to vector fields; their
C∞(M)-module is denoted by X∗(M). A one-form ϑ ∈ X∗(M)
and a vector field X ∈ X(M) combine naturally to give the
smooth function

ϑ(X) : M → R, p ∈ M �→ ϑ(X)(p) := ϑp(Xp).

Each function f ∈ C∞(M) gives rise to the one-form df , its
differential, given by

df(X) := Xf, X ∈ X(M).

We shall need the exterior derivative dϑ of a one-form ϑ on M .
It is a skew-symmetric covariant tensor field of degree 2 on M
which may practically be given by the formula

dϑ(X, Y ) := X(ϑY ) − Y (ϑX) − ϑ[X, Y ]; X, Y ∈ X(M).

(7) By a covariant derivative operator or simply a covariant deriv-
ative in a vector bundle π : E → M we mean a map

(X, σ) ∈ X(M) × Γ(π) �→ DXσ ∈ Γ(π)

satisfying the following conditions:
(i) DfX+hY σ = fDXσ + hDY σ,
(ii) DX(σ1 + σ2) = DXσ1 + DXσ2,
(iii) DX(fσ) = (Xf)σ + fDXσ.

Here X, Y ∈ X(M); σ, σ1, σ2 ∈ Γ(π); f, h ∈ C∞(M). The
covariant differential of a section σ ∈ Γ(π) is the map

Dσ : X(M) → Γ(π), X �→ Dσ(X) := DXσ,

which collects all the covariant derivatives of σ. If we set

R(X, Y )σ := DXDY σ − DY DXσ − D[X,Y ]σ; X, Y ∈ X(M), σ ∈ Γ(π),

then R(X, Y )σ ∈ Γ(π), and the map

(X, Y, σ) ∈ X(M) × X(M) × Γ(π) �→ R(X, Y, σ) ∈ Γ(π)

is C∞(M)-trilinear; it is said to be the curvature of D.
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2.3. The pull-back bundle π∗τ

Let T̃M ⊂ TM be an open set such that τ
(
T̃M

)
= M , and let

π := τ � T̃M . Consider the fibre product

π∗TM := T̃M ×M TM :=
{
(v, w) =: wv ∈ T̃M × TM

∣∣∣π(v) = τ(w)
}

,

and define the projection π∗τ : π∗TM → T̃M by π∗τ(wv) := v. Then
the fibres (π∗TM)v := (π∗τ)−1(v) = {v}×Tπ(v)M carry a natural linear
structure given by

α(w1)v + β(w2)v := (αw1 + βw2)v; w1, w2 ∈ Tπ(v)M ; α, β ∈ R.

Thus π∗τ : T̃M ×M TM → TM becomes an n-vector bundle, called
the pull-back of τ over π. Note that the fibres of π∗τ may canonically
be identified with the real vector spaces Tπ(v)M ’s by the isomorphisms
wv ∈ (π∗TM)v �→ w ∈ Tπ(v)M .

The most important special cases arise when

T̃M = TM, π = τ, and T̃M =
◦
TM, π =

◦
τ ;

then we get the pull-back τ∗τ of τ over itself and the pull-back
◦
τ∗τ of

τ over
◦
τ , respectively.

Comparing with Matsumoto’s theory of Finsler connections, in our
approach the bundle π∗τ plays the same role as his ‘Finsler bundle’ in
[29] or the ‘vectorial frame bundle’ in [30]; see also [13].

2.4. Tensors along π

Instead of Γ(π∗τ) we denote by X(π) the C∞(
T̃M

)
-module of sec-

tions of π∗τ . The elements of X(π) are of the form{
X̃ =

(
1

T̃M
, X

)
: T̃M → T̃M ×M TM,

X : T̃M → TM is a smooth map such that τ ◦ X = π.

X̃ and X may be identified. These sections will also be mentioned as
vector fields along π. We have the canonical section

δ :=
(
1

T̃M
, 1

T̃M

)
: v ∈ T̃M �→ δ(v) = (v, v) ∈ T̃M ×M TM.

If X ∈ X(M), then X̂ :=
(
1

T̃M
, X ◦ π

)
is a vector field along π, called

a basic vector field. Obviously, the C∞(
T̃M

)
-module X(π) is gen-

erated by basic vector fields. Analogously, if α ∈ X∗(M), then
α̂ :=

(
1

T̃M
, α ◦ π

)
∈ X∗(π); α̂ is said to be a basic one-form along π.
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As in the classical case (2.2. (5)), by a covariant or a vectorvariant
tensor (field) of degree k ∈ N∗ along π, resp., we mean a C∞(

T̃M
)
-

multilinear map Ã : (X(π))k → C∞(
T̃M

)
or B̃ : (X(π))k → X(π). For

details we refer to [40], 2.22.

2.5. The basic short exact sequence

Starting from the vector bundles π∗τ and τ
T̃M

: T T̃M → T̃M we
may construct the short exact sequence of strong bundle maps

(2.5.1) 0 → T̃M ×M TM
i→ T T̃M

j→ T̃M ×M TM → 0,

where i identifies the fibre {v} × Tπ(v)M with the tangent vector space
TvTπ(v)M for all v ∈ T̃M , while j :=

(
τ
T̃M

, π∗
)
. The property that

(2.5.1) is an exact sequence means that i is injective, j is surjective,
and Im i = Ker j. The bundle maps i and j induce the C∞(

T̃M
)
-

homomorphisms

X̃ ∈ X(π) �→ iX̃ := i ◦ X̃ ∈ X
(
T̃M

)
, ξ ∈ X

(
T̃M

)
�→ jξ := j ◦ ξ ∈ X(π)

at the level of modules of sections, and we denote these maps also by
i and j. Thus we also have the exact sequence of C∞(

T̃M
)
-homomor-

phisms

(2.5.2) 0 → X(π) i→ X
(
T̃M

) j→ X(π) → 0.

Both (2.5.1) and (2.5.2) will be referred to as the basic (short) exact
sequence.

X
v
(
T̃M

)
:=

{
iX̃ ∈ X

(
T̃M

)∣∣∣X̃ ∈ X(π)
}

is a subalgebra of the Lie algebra X
(
T̃M

)
, called the algebra of verti-

cal vector fields on T̃M . In particular, for any vector field X on M ,
Xv := iX̂ is a vertical vector field, the vertical lift of X . The map

�v : X(M) → X(TM), X �→ �v(X) := Xv

is said to be the vertical lifting from X(M) into X(TM).
The basic short exact sequence makes it possible to define the fol-

lowing canonical objects:

C := iδ – the Liouville vector field on T̃M,

J := i ◦ j – the vertical endomorphism of X
(
T̃M

)
.
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Then we have immediately that

Im J = KerJ = Xv
(
T̃M

)
, J2 = 0;(2.5.3)

[C, Xv] = −Xv, [C, Xc] = 0 (X ∈ X(M)).(2.5.4)

2.6. Brackets
For any vector field ξ on T̃M and type (1,1) tensors A, B on T̃M we

define the Frölicher –Nijenhuis brackets [ξ, A] and [A, B] by the following
rules for calculation:

[ξ, A]η := [ξ, Aη] − A[ξ, η], η ∈ X
(
T̃M

)
;(2.6.1)

[A, B] (ξ, η) := [Aξ, Bη] + [Bξ, Aη] + (A ◦ B + B ◦ A)[ξ, η]

− A[Bξ, η] − A[ξ, Bη] − B[Aξ, η] − B[ξ, Aη].
(2.6.2)

In particular, NA := 1
2 [A, A] is said to be the Nijenhuis torsion of A.

Then we have

(2.6.3) [Xv, J ] = [Xc, J ] = 0 (X ∈ X(M)), [C, J ] = −J, NJ = 0.

For a systematic treatment and applications of Frölicher –Nijenhuis
theory of vector valued differential forms we refer to [18, 32, 40].

2.7. The canonical v-covariant derivative
Let X̃ be a section along π, and set

∇v
X̃

F :=
(
iX̃

)
F = (dF ◦ i)

(
X̃

)
if F ∈ C∞(

T̃M
)
;(2.7.1)

∇v
X̃

Ỹ := j
[
iX̃, η

]
if Ỹ ∈ X(π) and η ∈ X

(
T̃M

)
such that jη = Ỹ .

(2.7.2)

Then ∇v
X̃

Ỹ is well-defined: it does not depend on the choice of η. The
map

∇v : X(π) × X(π) → X(π),
(
X̃, Ỹ

)
�→ ∇v

X̃
Ỹ

has the properties 2.2. (7) (i), (ii) of a covariant derivative operator, but
the product rule takes the slightly different form

∇v
X̃

FỸ =
(
∇v

X̃
F

)
Ỹ + F∇v

X̃
Ỹ .

∇v is said to be the canonical v-covariant derivative in π∗τ . It may
be extended to be a tensor derivation of the tensor algebra of X(π) by
the standard pattern. For any tensor field Ã along π, the v-covariant
differential ∇vÃ collects all the v-covariant derivatives of Ã, cf. 2.2. (7).
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2.8. Lagrangian forms and Hessians

Let F : T̃M → R be a smooth function, mentioned also as a La-
grangian in this context. Then

ϑF := dF ◦ J and ωF := dϑF = d(dF ◦ J)

are one- and two-forms on T̃M , called the Lagrangian 1-form and the
Lagrangian 2-form associated to F . The second v-covariant differential

gF := ∇v∇vF

of F is a symmetric covariant tensor field of degree 2 along π, called the
Hessian of F . ωF and gF are related by

(2.8.1) ωF (Jξ, η) = gF (jξ, jη); ξ, η ∈ X
(
T̃M

)
.

It now follows immediately that ωF and gF are non-degenerate at the
same time. In case of non-degeneracy F is said to be a regular La-
grangian.

Warning. Throughout the paper, non-degeneracy should be meant
pointwise and not at the level of sections; the latter would be a weaker
condition on gF .

2.9. Semisprays and Lagrangian vector fields

We recall that a vector field S on T̃M is said to be a second-order
vector field or a semispray if JS = C or, equivalently, if jS = δ. If,

in addition,
◦
TM ⊂ T̃M and [C, S] = S, then S is called a spray. The

condition [C, S] = S implies that the fibre components of a spray are
positively homogeneous functions of degree 2. If S is a semispray, then
we have

(2.9.1) J [Jξ, S] = Jξ for all ξ ∈ X
(
T̃M

)
.

This useful relation was established by J. Grifone [16].
Now suppose that F ∈ C∞(

T̃M
)

is a regular Lagrangian, and let
LF := CF − F . It is a well-known but fundamental fact that there is a
unique semispray S on T̃M such that

(2.9.2) iSωF = −dLF ;

for a proof see e.g. [25] 7.1. The semispray S given by (2.9.2) is said to
be the Lagrangian vector field for F .
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§3. Ehresmann connections. Covariant derivatives in π∗τ

3.1. Ehresmann connections and associated maps

By an Ehresmann connection (or a nonlinear connection) H on T̃M
we mean a right splitting of the basic exact sequence (2.5.1), i.e., a strong
bundle map H : T̃M ×M TM → T T̃M such that j ◦ H = 1

T̃M×M TM .

The type (1,1) tensor field h := H ◦ j on T̃M is the horizontal projector
belonging to H, and v := 1

TT̃M
− h is the complementary vertical pro-

jector. To every Ehresmann connection H corresponds a unique strong
bundle map V : T T̃M → T̃M ×M TM such that

V ◦ i = 1
T̃M×M TM and KerV = ImH;

V is called the vertical map associated to H. H and V induce C∞(
T̃M

)
-

homomorphisms at the level of sections by the rules

X̃ ∈ X(π) �→ H ◦ X̃ =: HX̃ ∈ X
(
T̃M

)
,

ξ ∈ X
(
T̃M

)
�→ V ◦ ξ =: Vξ ∈ X(π).

Thus H and V give rise to a right and a left splitting also of (2.5.2),
respectively, denoted by the same symbols.

Xh
(
T̃M

)
:=

{
HX̃ ∈ X

(
T̃M

)∣∣∣X̃ ∈ X(π)
}

is the C∞(
T̃M

)
-module of the horizontal vector fields on T̃M . The

horizontal vector fields do not form, in general, a subalgebra of the Lie
algebra X

(
T̃M

)
; this failure will be measured by the curvature of the

Ehresmann connection.

3.2. Horizontal lifts
Let an Ehresmann connection H be specified on T̃M . For any vector

field X on M , Xh := H ◦ X̂ =: HX̂ is a horizontal vector field, called
the horizontal lift of X . The map �h : X ∈ X(M) �→ �h(X) := Xh is
said to be the horizontal lifting with respect to H.

The following useful observation can easily be proved.

Lemma 1. If �h is the horizontal lifting with respect to the Ehres-
mann connection H, then

(i) �h(fX) = fv�h(X) for any vector field X on M and function
f ∈ C∞(M),

(ii) J ◦ �h = �v.
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Conversely, given a map �h : X(M) → X
(
T̃M

)
satisfying (i) and (ii),

there is a unique Ehresmann connection H on T̃M such that �h is the
horizontal lifting with respect to H. Setting

HX̂ := �h(X) if X ∈ (M),

H can be given via C∞(
T̃M

)
-linear extension.

3.3. The difference tensor
Let H1 and H2 be Ehresmann connections on T̃M . Since

J ◦ (H1−H2) = i◦ (j◦H1− j◦H2) = i◦
(
1

T̃M×M TM
− 1

T̃M×M TM

)
= 0,

H1 −H2 is vertical-valued. So there is a unique endomorphism P along
π such that

(3.3.1) H1 −H2 = i ◦ P ;

P is said to be the difference tensor of H1 and H2. It is easy to check
that

(3.3.2) i ◦ P = v2 ◦ H1,

where v2 is the vertical projector belonging to H2.

3.4. The Crampin – Grifone construction

Note first that if H is an Ehresmann connection on T̃M , then

SH := Hδ

is a semispray, called the associated semispray to H. Now, conversely,
we sketch a process discovered (independently) by M. Crampin [7, 8, 9]
and J. Grifone [16] that results in an Ehresmann connection if we start
from a semispray S on T̃M . Consider the map

(3.4.1) �h : X ∈ X(M) �→ �h(X) :=
1
2
(Xc − [S, Xv]).

A straightforward calculation shows that �h satisfies the conditions of
Lemma 1, therefore gives rise to an Ehresmann connection HS with
horizontal lifting �h. The horizontal projector belonging to HS is given
by the formula

(3.4.2) hS =
1
2

(
1

X(T̃M) − [S, J ]
)

.

The semispray associated to HS is 1
2 (S + [C, S]), which coincides with

the original semispray S if and only if it is a spray.
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3.5. Torsions
Let a covariant derivative operator

D : X
(
T̃M

)
× X(π) → X(π),

(
ξ, Ỹ

)
�→ DξỸ

be given in π∗τ . By the torsion of D we mean the map

(3.5.1) T (D) : (ξ, η) ∈ X
(
T̃M

)
× X

(
T̃M

)
�→ T (D)(ξ, η)

:= Dξjη − Dηjξ − j[ξ, η] ∈ X(π).

Then T (D) is an X(π)-valued tensor field of degree 2 on T̃M . We may
also form a type (1,2) tensor field T v(D) along π given by

(3.5.2) T v(D)
(
X̃, Ỹ

)
:= DiX̃ Ỹ − DiỸ X̃ − i−1

[
iX̃, iỸ

]
; X̃, Ỹ ∈ X(π);

T v(D) is called the vertical torsion of D. Following J.-G. Diaz and G.
Grangier [12], we call the map

(3.5.3) S :
(
X̃, Ỹ

)
∈ X(π) × X(π) �→ S

(
X̃, Ỹ

)
:= ∇v

Ỹ
X̃ − DiỸ X̃

the Finsler torsion of D; it is again a type (1,2) tensor field along π. If
S = 0, then we say that D is vertically natural. In the presence of an
Ehresmann connection H in π∗τ we may define the horizontal torsion

(3.5.4) T := T (D) ◦ (H×H)

of D. It is a type (1,2) tensor field along π such that

T
(
X̃, Ỹ

)
:= DHX̃ Ỹ − DHỸ X̃ − j

[
HX̃,HỸ

]
; X̃, Ỹ ∈ X(π).

The torsion of D is completely determined by the horizontal torsion and
the Finsler torsion, namely for any vector fields ξ, η on T̃M we have

T (D)(ξ, η) = T (jξ, jη) + S(jξ,Vη) − S(jη,Vξ),

where V is the vertical map associated to H.

3.6. Deflections and regularities
By the deflection of a covariant derivative operator D in π∗τ we

mean the covariant differential µ := Dδ of the canonical section. The
type (1,1) tensor field

µ̃ := µ ◦ i : X̃ ∈ X(π) �→ µ̃X̃ := µ
(
iX̃

)
= DiX̃δ
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along π is said to be the v-deflection of D. The v-deflection and the
Finsler torsion of D are related by

(3.6.1) µ̃ = 1X(π) − iδS.

Indeed, let X̃ be a vector field along π. It can be represented in the
form X̃ = jξ, ξ ∈ X

(
T̃M

)
. Using an arbitrary ‘auxiliary’ Ehresmann

connection H on T̃M , and taking into account (2.7.2) and (2.9.1) we
have

(iδS)
(
X̃

)
= S

(
δ, X̃

)
= ∇v

X̃
δ − DiX̃δ = j

[
iX̃,Hδ

]
− µ̃X̃

= j[Jξ, SH] − µ̃X̃ = jξ − µ̃X̃ =
(
1X(π) − µ̃

) (
X̃

)
.

The covariant derivative operator is said to be
regular if µ̃ is (pointwise) invertible,
strongly regular if µ̃ = 1X(π),
Moór –Vanstone regular if

(
µ̃ − 1X(π)

)2 = 0.
In view of (3.6.1) these properties can be expressed in terms of the
Finsler torsion of D as follows:

D is regular ⇐⇒ 1X(π) − iδS is bijective;
D is strongly regular ⇐⇒ iδS = 0;
D is Moór –Vanstone regular ⇐⇒ (iδS)2 = 0.

As a consequence, we have the following implications for a covariant
derivative D in π∗τ :

D is vertically natural =⇒ D is strongly regular
=⇒ D is Moór –Vanstone regular =⇒ D is regular.

The concept of Moór – Vanstone regularity appeared in the papers
[36, 42] in the form of quite a strange coordinate expression. As a matter
of fact, it is not difficult to produce Moór –Vanstone regular (and hence
regular) covariant derivatives. This assertion may be made more vivid
by an example. Consider a type (1,1) tensor field Ã along π such that
Ãδ = 0, and let

S
(
X̃, Ỹ

)
:=

(
ÃỸ

)
X̃; X̃, Ỹ ∈ X(π).

If D is a covariant derivative operator such that

DiX̃ Ỹ := ∇v
X̃

Ỹ − S
(
Ỹ , X̃

)
,
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then the Finsler torsion of D is just the given tensor S, and we have for
any section X̃ ∈ X(π)

(iδS)2
(
X̃

)
= iδS

((
ÃX̃

)
δ
)

=
(
ÃX̃

)
S(δ, δ) =

(
ÃX̃

)(
Ãδ

)
δ = 0,

therefore D is Moór –Vanstone regular. This observation is due to Tom
Mestdag.

3.7. Associatedness
Let a covariant derivative operator D and an Ehresmann connection

H be given in π∗τ . As above, we denote by µ and V the deflection of
D and the vertical map belonging to H, resp. By the h-deflection of D
(with respect to H) we mean the map

µh := µ ◦ H : X̃ ∈ X(π) �→ µhX̃ := µ
(
HX̃

)
= DHX̃δ ∈ X(π).

D is said to be
associated to H if Kerµ = ImH,
strongly associated to H if µ = V .

We have the simple

Lemma 2. A covariant derivative operator D in π∗τ is
(i) associated to an Ehresmann connection H if and only if it is

regular and has vanishing h-deflection;
(ii) strongly associated to H if and only if it is strongly regular and

has vanishing h-deflection.

3.8. Ehresmann connections induced by covariant deriva-
tives

Proposition 3. Let D be a regular covariant derivative in π∗τ , with
deflection µ and v-deflection µ̃. Then the map

�D : X ∈ X(M) �→ �D(X) := Xc − iµ̃−1DXcδ

is a horizontal lifting in the sense that it satisfies conditions (i) and (ii)
of Lemma 1. Thus �D determines a unique Ehresmann connection HD

such that HDX̂ = �D(X) for any vector field X on M . The h-deflection
of D with respect to HD vanishes, therefore Kerµ = ImHD. HD is the
unique Ehresmann connection with this property.

Proof. Let X ∈ X(M), f ∈ C∞(M). Then

�D(fX) := (fX)c − iµ̃−1D(fX)cδ = fvXc + f cXv − iµ̃−1DfvXc+fcXvδ

= fv
(
Xc − iµ̃−1DXcδ

)
+ f c

(
Xv − iµ̃−1DiX̂δ

)
= fv�D(X) + f c

(
Xv − iµ̃−1µ̃X̂

)
= fv�D(X),
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J ◦ �D(X) = JXc − i ◦ j ◦ iµ̃−1DXcδ = Xv = �v(X),

so �D is indeed a horizontal lifting. Since

DHDX̂δ = DXcδ − Di◦µ̃−1DXc δδ = DXcδ − µ̃
(
µ̃−1DXcδ

)
= DXcδ − DXcδ = 0,

and the basic vector fields generate X(π), it follows that the h-deflection
of D with respect to HD vanishes.

Suppose, finally, that H is another Ehresmann connection with this
property, i.e.,

DHX̃δ = 0, X̃ ∈ X(π).

Then, by (3.3.1) and (3.3.2),

H−HD = vD ◦ H = i ◦ VD ◦ H

(vD and VD are the vertical projector and vertical map belonging to
HD), and for any section X̃ ∈ X(π) we have

µ̃
(
(H−HD)

(
X̃

))
= µ

(
i ◦ VD

(
HX̃

))
= DiVD(HX̃)δ

= D(H−HD)(X̃)δ = DHX̃δ − DHDX̃δ = 0.

This implies that H = HD, since µ̃ is injective by the regularity of D.

The Ehresmann connection characterized by Proposition 3 is said
to be the Ehresmann connection induced by D. If, in particular, D is
strongly regular, then

(3.8.1) HDX̂ = Xc − iDXcδ, X ∈ X(M).

3.9. The Berwald derivative. Tension
Let an Ehresmann connection H be given in π∗τ , and let

V be the vertical map associated to H. Define the mapping
∇ : X

(
T̃M

)
× X(π) → X(π) by

(3.9.1) ∇HX̃ Ỹ := V
[
HX̃, iỸ

]
, ∇iX̃ Ỹ := ∇v

X̃
Ỹ ; X̃, Ỹ ∈ X(π).

Then ∇ is a covariant derivative operator in π∗τ , called the Berwald de-
rivative induced by H. Thus ∇ is vertically natural ab ovo, and hence it
is strongly regular. Sometimes it is convenient to separate the horizontal
part ∇h of ∇ given by

∇h
X̃

Ỹ := ∇HX̃ Ỹ ; X̃, Ỹ ∈ X(π).
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The h-deflection
t := ∇hδ

of ∇ (with respect to H) is said to be the tension of the Ehresmann con-

nection H. If
◦
TM ⊂ T̃M and t = 0, then H is said to be homogeneous.

Since
i
(
tX̂

)
= i∇Xhδ = i ◦ V

[
Xh, C

]
for all X ∈ X(M), it follows that in the homogeneous case the fibre
components of the horizontally lifted vector fields are positively homo-

geneous of degree 1. If
◦
TM ⊂ T̃M , from Lemma 2 we may also conclude

that the Berwald derivative induced by an Ehresmann connection H is
strongly associated to H if and only if H is homogeneous.

The tension has another slightly different interpretation. Let H∇
be the Ehresmann connection induced by the Berwald derivative deter-
mined by H. Then the difference tensor of H and H∇ is just the tension
of H:

(3.9.2) H−H∇ = i ◦ t.

Indeed, since ∇ is strongly regular, we may apply (3.8.1) to get

H∇X̂ = Xc − i∇Xcδ = Xc − i∇H(jXc)δ − i∇i(VXc)δ

= Xc − i
(
tX̂

)
− i(VXc) = Xc − vXc − i ◦ t

(
X̂

)
= (H− i ◦ t)

(
X̂

)
.

3.10. Curvature and torsions of Ehresmann connections
Let an Ehresmann connection H be given in π∗τ , with associated

vertical map V , horizontal and vertical projectors h and v and induced
Berwald derivative ∇.

The obstruction to integrability of ImH is measured by the curva-
ture Ω of H defined by

Ω
(
X̃, Ỹ

)
:= −V

[
HX̃,HỸ

]
; X̃, Ỹ ∈ X(π).

A somewhat simpler formula:

iΩ
(
X̂, Ŷ

)
= −v

[
Xh, Y h

]
; X, Y ∈ X(M).

In this paper the curvature will not be applied.
By the torsion T of H we mean the horizontal torsion of ∇: T :=

T (∇)◦ (H×H). (It is called weak torsion by J. Grifone.) Then we have

T
(
X̃, Ỹ

)
= V

[
HX̃, iỸ

]
− V

[
HỸ , iX̃

]
− j

[
HX̃,HỸ

]
; X̃, Ỹ ∈ X(π).
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A more impressive formula:

iT
(
X̂, Ŷ

)
=

[
Xh, Y v

]
−

[
Y h, Xv

]
− [X, Y ]v; X, Y ∈ X(M).

It can be shown by a pleasant calculation that H has vanishing torsion
if it is generated by a semispray according to the Crampin –Grifone
construction. The converse is also true, but much more difficult: if
TpM ∩ T̃M is simply connected for any p ∈ M , and an Ehresmann
connection on T̃M has vanishing torsion, then it arises from a semispray
by (3.4.1) (a theorem of M. Crampin) For a fascinating proof we refer
to [7], see also [40].

The type (1,1) tensor field Ts along π given by

Ts := t + iδT

is said to be the strong torsion of the Ehresmann connection H. Its
meaning is clarified by

Proposition 4. If S := Hδ is the semispray associated to H,
and HS is the Ehresmann connection arising from S by the Crampin –
Grifone construction, then

H−HS = i ◦ 1
2
Ts,

i.e., 1
2T

s is the difference tensor of H and HS.

Proof. For any vector field X on M we have

i
(
TsX̂

)
= i

(
tX̂

)
+ iT

(
δ, X̂

)
= v

[
Xh, C

]
+ v[S, Xv] − v

[
Xh, C

]
− J

[
S, Xh

]
= v[S, Xv] + J

[
Xh, S

]
,

where the vertical projector v and the horizontal lift Xh belong to H.
By the definition of HS , and taking into account HS −H = v ◦HS (see
(3.3.1) and (3.3.2)), we get

v[S, Xv] = v
(
Xc − 2HSX̂

)
= Xc − hXc − 2v

(
HSX̂

)
= Xc − Xh − 2

(
HSX̂ − Xh

)
= Xh + Xc − 2HSX̂.

The term J
[
Xh, S

]
can be formed as follows:

J
[
Xh, S

]
= J [hXc, S] = J [Xc, S] − J [vXc, S].
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Relations [Xc, J ] = 0 and [C, Xc] = 0 imply J [Xc, S] = 0, while
J [vXc, S] = vXc = Xc − Xh by (2.9.1). Thus

i
(
TsX̂

)
= Xh + Xc − 2HSX̂ + Xh − Xc = 2(H−HS)

(
X̂

)
,

which proves the Proposition.

Now we conclude J. Grifone’s following important result as an im-
mediate consequence.

Corollary 5. The strong torsion of an Ehresmann connection van-
ishes if and only if its torsion and tension vanish. An Ehresmann con-
nection is uniquely determined by its associated semispray and strong
torsion.

§4. Generalized metrics

4.1. Basic concepts
By a generalized metric (called also a generalized Finsler or a gener-

alized Lagrange metric), briefly a metric we mean a pseudo-Riemannian
metric in π∗τ . So g is a metric in this sense if it is a map that sends a
non-degenerate symmetric bilinear form

gv : Tπ(v)M × Tπ(v)M → R

to any vector v ∈ T̃M . It is assumed that gv varies smoothly. This
means that for any two (smooth) vector fields X̃, Ỹ along π the function

g
(
X̃, Ỹ

)
: v ∈ T̃M �→ gv

(
X̃(v), Ỹ (v)

)
∈ R

should be a smooth function. Due to the non-degeneracy we can define
the canonical musical dualities. If α̃ is a one-form along π, then there is
a unique vector field α̃� along π such that

α̃
(
Ỹ

)
= g

(
α̃�, Ỹ

)
for any vector field Ỹ along π. Conversely, if X̃ is a vector field along
π, then a one-form X̃� ∈ X∗(π) is determined by the condition

X̃�
(
Ỹ

)
= g

(
X̃, Ỹ

)
for every vector field Ỹ along π.

We associate to any metric g in π∗τ the Lagrange one-form

ϑg : X̃ ∈ X(π) �→ ϑgX̃ := g
(
X̃, δ

)
∈ C∞(

T̃M
)
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and the Lagrange two-form

ωg := d(ϑg ◦ j),

cf. 2.8. Note that the Lagrange one-form lives along π, while ωg is a
usual two-form on T̃M .

By the absolute energy of a metric g we mean the smooth function
L := 1

2g(δ, δ) on T̃M . If L is a regular Lagrangian, i.e., its Hessian
gL := ∇v∇vL is non-degenerate, then g is said to be an energy-regular
metric. If

∇v
δg = ∇Cg = 0,

then g is called homogeneous. In this case the components of g with
respect to any induced chart on T̃M are positively homogeneous func-
tions of degree 0. Now it turns out why it is crucial that g need not be
defined on the zero section: otherwise, under homogeneity, it should be
a basic tensor field along τ arising from a pseudo-Riemannian metric on
M , and the velocity-dependent character of the theory is lost.

If a metric is energy-regular and homogeneous, then we speak of a
Moór –Vanstone metric.

4.2. Finsler energies and Finsler metrics

By a Finsler energy on
◦
TM we mean a smooth function L on

◦
TM

which is positively homogeneous of degree 2 and whose Hessian gL :=
∇v∇vL is non-degenerate. Then gL is a metric in

◦
τ∗τ in the above sense,

called a Finsler metric on
◦
TM . We note that this concept of a Finsler

metric is more general than the usual one since the positiveness of L
is not required. It can be shown that if L is, in addition, everywhere
positive, then the metric tensor gL is positive definite [26]. It may be seen
immediately that the absolute energy of a Finsler metric gL is just the
given Finsler energy L, and gL is homogeneous. Thus any Finsler metric
is a Moór –Vanstone metric. The converse is, of course, definitely false
in general, although the absolute energy of a Moór –Vanstone metric is,
by the definition, a Finsler energy.

Due to its homogeneity property, any Finsler energy L :
◦
TM → R

can uniquely be extended to a C1 function L̃ : TM → R such that
L̃(v) = 0 if v = 0. Since CL − L = L, the Lagrangian vector field S for
L is determined by the relation

iSd(dL ◦ J) = −dL,

(cf. (2.9.2)), and it is, in fact, a spray. S can also be prolonged to a C1

map S̃ : TM → TTM such that S̃ � TM \
◦
TM = 0. S is said to be the
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canonical spray for the Finsler energy L. According to the Crampin –
Grifone construction, S generates an Ehresmann connection HL in

◦
τ∗τ ,

called the Barthel connection of the Finsler manifold (M, L).

4.3. The Cartan tensors and the Miron tensor
Let g be a metric in π∗τ . The covariant Cartan tensor of g is the v-

covariant differential C� := ∇vg of the metric. The vectorvariant Cartan
tensor C is defined by the musical duality given by

C�

(
X̃, Ỹ , Z̃

)
= g

(
C
(
X̃, Ỹ

)
, Z̃

)
; X̃, Ỹ , Z̃ ∈ X(π).

Both of these metrically equivalent tensors will be mentioned as the
Cartan tensor of g. In terms of the Cartan tensor, the homogeneity of
g can be expressed as follows:

(4.3.1) ∇v
δg = 0 ⇐⇒ ∀X̃ ∈ X(π) : C

(
δ, X̃

)
= 0.

If, in particular, g is a Finsler metric, then its Cartan tensor C�

is totally symmetric. In general, C� is symmetric only in its last two
variables. This lack of the symmetries of the Cartan tensors is perhaps
the main source of the difficulties one has to face studying generalized
metrics.

By the Miron tensor of g we mean the type (1,1) tensor

A : X̃ ∈ X(π) �→ AX̃ := X̃ + C
(
X̃, δ

)
along π. It is related to the Lagrange two-form ωg of g by

(4.3.2) ωg(Jξ, η) = g(A(jξ), jη); ξ, η ∈ X
(
T̃M

)
.

From this it may easily be concluded that ωg is non-degenerate if and
only if the Miron tensor A is pointwise injective (and hence invertible).
In this case we call the metric Miron-regular.

4.4. Some special classes of metrics
A metric g in π∗τ is said to be

variational if its vectorvariant Cartan tensor is symmetric (or,
equivalently, its covariant Cartan tensor is totally symmetric);
weakly variational if C�

(
X̃, Ỹ , δ

)
= C�

(
Ỹ , X̃, δ

)
for any vector

fields X̃, Ỹ along π;
normal if C

(
X̃, δ

)
= 0 for every X̃ ∈ X(π);

weakly normal if C�

(
X̃, δ, δ

)
= 0 for any vector field X̃ along

π.
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By a Miron metric we mean a weakly normal Miron-regular metric.
We now have

Theorem 6. Let g be a metric in π∗τ .

(i) Suppose that TpM ∩ T̃M is simply connected for every point
p ∈ M . Then g is variational if and only if it is the Hessian
of a smooth function on T̃M , i.e.,

∃F ∈ C∞(
T̃M

)
: g = ∇v∇vF.

Setting LF := CF −F , the absolute energy of g is 1
2CLF . The

Lagrangian forms associated to g coincide with the Lagrangian
forms associated to LF , more precisely

ϑg ◦ j = ϑLF , ωg = ωLF .

(ii) We continue to assume that TpM ∩ T̃M is simply connected
for every p ∈ M . g is weakly variational if and only if the
Lagrangian one-form ϑg associated to g is ∇v-exact, i.e.,

∃F ∈ C∞(
T̃M

)
: ϑg = ∇vF.

(iii) (M. Hashiguchi) A metric on
◦
TM is normal if and only if it

is a Finsler metric. More precisely, if g is a normal metric on
◦
TM , then the absolute energy L of g is a Finsler energy, and
g = gL = ∇v∇vL. Conversely, any Finsler metric is normal.

(iv) If T̃M =
◦
TM , then g is weakly normal if and only if its La-

grange one-form can be identified with the Lagrange one-form
associated to its absolute energy L:

ϑg ◦ j = ϑL, or (equivalently) ϑg = dL ◦ i = ∇vL.

A complete proof of this theorem can be found in [31]. For the
convenience of the reader, and for its own interest, we present here a
self-contained proof of part (iii), Hashiguchi’s theorem.

Suppose first g is a normal metric on
◦
TM , i.e., it satisfies the con-

dition

(4.4.1) C
(
X̃, δ

)
= 0 for any vector field X̃ along

◦
τ.
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We check that the absolute energy L = 1
2g(δ, δ) of g is positively homo-

geneous of degree 2. This is a routine verification:

CL =
1
2
C(g(δ, δ)) =

1
2
((∇Cg)(δ, δ) + 2g(∇Cδ, δ))

=
1
2
C�(δ, δ, δ) + g(δ, δ)

(4.4.1)
= 2L.

Our condition (4.4.1) also implies that the Miron tensor of g is the
identity endomorphism along

◦
τ , i.e., A = 1

X(
◦
τ)

. Thus relation (4.3.2)
reduces to

ωg(Jξ, η) = g(jξ, jη); ξ, η ∈ X

( ◦
TM

)
.

By the choice ξ := Xc, η := Y c; X, Y ∈ X(M) this takes the form

ωg(Xv, Y c) = g
(
X̂, Ŷ

)
.

Since

ωg(Xv, Y c) = d(ϑg ◦ j)(Xv, Y c) = Xv
(
ϑgŶ

)
− Y c(ϑgjXv)

− ϑg(j[Xv, Y c]) = Xv
(
ϑgŶ

)
− ϑg(j[X, Y ]v) = Xvg

(
Ŷ , δ

)
,

and
0 = C

(
Ŷ , δ, δ

)
= (∇Y vg)(δ, δ) = 2Y vL − 2g

(
Ŷ , δ

)
,

it follows that
g
(
X̂, Ŷ

)
= Xv(Y vL) = gL

(
X̂, Ŷ

)
,

which concludes the proof of (iii).
As an immediate consequence, we have (under the hypotheses of the

theorem) the following implications:

g is a Finsler metric

⇐
⇒

g is normal

⇐= =⇒

g is weakly normal g is variational

=⇒ ⇐=
g is weakly variational

To conclude this section, we collect here some further useful corol-
laries.
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Corollary 7. A metric in
◦
τ∗τ is a Finsler metric if and only if its

Miron tensor is the unit tensor along
◦
τ .

This is just a reformulation of Hashiguchi’s theorem.

Corollary 8. If g is a weakly variational metric in
◦
τ∗τ , then its

Miron tensor yields a selfadjoint linear transformation in every fibre.

Proof. For any v ∈
◦
TM ; w1, w2 ∈ Tτ(v)M we have

gv(Cv(w1, v), w2) = (C�)v(w1, v, w2) = (C�)v(w2, v, w1)

= gv(Cv(w2, v), w1),

therefore

gv(Av(w1), w2) = gv(w1, w2) + gv(Cv(w1, v), w2)

= gv(w1, w2) + gv(Cv(w2, v), w1) = gv(w1, Av(w2)).

Corollary 9. The absolute energy of a Miron metric is a Finsler
energy.

Proof. Let g be a Miron metric in
◦
τ∗τ . First we show that weak

normality of g implies

(4.4.2) g
(
AX̂, Ŷ

)
= gL

(
X̂, Ŷ

)
; X, Y ∈ X(M).

Indeed, by part (iv) of Theorem 6 we have ϑg = ∇vL. Hence, applying
(4.3.2), we get

g
(
AX̂, Ŷ

)
= g(A(jXc), jY c) = ωg(JXc, Y c) = d(∇vL ◦ j)(Xv, Y c)

= Xv
(
∇vL

(
Ŷ

))
− Y c(∇vL(jXv)) −∇vL(j[Xv, Y c])

= Xv(Y vL) = gL

(
X̂, Ŷ

)
.

Now by the Miron-regularity of g it follows from (4.4.2) that gL is non-
degenerate. The homogeneity property CL = 2L can be obtained by
the same calculation as in the proof of Hashiguchi’s theorem.

§5. Good metric derivatives

5.1. Metric derivatives in a pseudo-Riemannian vector
bundle

We start with some remarks on a very general situation, so in this
subsection π : E → M will be an r-vector bundle.



Ehresmann connections, metrics and good metric derivatives 289

(1) It can be shown by a standard partition of unity argument
that there exist covariant derivative operators in π. (For two
other types of proof we refer to [15], 7.11.) If D1 and D2 are
covariant derivatives in π, then the map

ψ : X(M) × Γ(π) → Γ(π), (X, σ) �→ ψ(X, σ) := D1
Xσ − D2

Xσ

is C∞(M)-bilinear. It is called the difference tensor of D1 and
D2. ψ may be considered as an End(Γ(π))-valued tensor on M
by the interpretation{

X ∈ X(M) �→ ψX ∈ End(Γ(π)),

ψX(σ) := ψ(X, σ), σ ∈ Γ(π).

We denote by LC∞(M)(X(M), End(Γ(π))) the module of

C∞(M)-linear maps X(M) → End(Γ(π)). If
◦
D is a covariant

derivative in π, ψ ∈ LC∞(M)(X(M), End(Γ(π))), and

DXσ :=
◦
DXσ + ψXσ; X ∈ X(M), σ ∈ Γ(π),

then D is also a covariant derivative operator in π, and every
covariant derivative can be obtained in this way.

(2) Now suppose that π is endowed with a pseudo-Riemannian
metric g : Γ(π) × Γ(π) → C∞(M); then the pair (π, g) is said
to be a pseudo-Riemannian vector bundle. In the pointwise
interpretation (cf. 4.1) g sends to each point p ∈ M a non-
degenerate, symmetric bilinear form gp : Ep × Ep → R such
that the function

g(σ1, σ2) : p ∈ M �→ gp(σ1(p), σ2(p)) ∈ R

is smooth for any sections σ1, σ2 ∈ Γ(π). We define the Cartan
tensors C and C� of g with respect to a covariant derivative D
in π on the analogy of 4.3 as follows:

C� := Dg, C�(X, σ1, σ2) =: g(C(X, σ1), σ2)

for all X ∈ X(M); σ1, σ2 ∈ Γ(π). Then

C ∈ LC∞(M)(X(M), End(Γ(π))).

(3) A covariant derivative D in (π, g) is said to be metric if

Xg(σ1, σ2) = g(DXσ1, σ2) + g(σ1, DXσ2)
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for every X ∈ X(M); σ1, σ2 ∈ Γ(π). Any pseudo-Riemannian
vector bundle admits a metric covariant derivative. Indeed,

let
◦
D be any covariant derivative in (π, g), and let C0 be the

vectorvariant Cartan tensor of g with respect to
◦
D. Then, as

it may immediately be seen, the map

D : (X, σ) ∈ X(M) × Γ(π) �→ DXσ :=
◦
DXσ +

1
2
C0(X, σ)

is a metric derivative in (π, g). The difference tensor of two
metric derivatives is skew-symmetric with respect to g. Con-
versely, if ψ ∈ LC∞(M)(X(M), End(Γ(π))) is skew-symmetric,
i.e., for all X ∈ X(M); σ1, σ2 ∈ Γ(π) we have

g(ψX(σ1), σ2) + g(σ1, ψX(σ2)) = 0,

and D is a metric derivative in (π, g), then

D̃ : (X, σ) �→ D̃Xσ := DXσ + ψX(σ)

is also a metric derivative.
(4) Let

Lsym
C∞(M)(X(M), End(Γ(π))) and Lskew

C∞(M)(X(M), End(Γ(π)))

denote the submodule of symmetric and skew-symmetric
End(Γ(π))-valued 1-tensors on M , respectively. Then
LC∞(M)(X(M), End(Γ(π))) is the direct sum of these sub-
modules, so there exists a unique endomorphism Ob of
LC∞(M)(X(M), End(Γ(π))) such that

Ob ◦Ob = Ob, i.e., Ob is a projector;

Im Ob = Lskew
C∞(M)(X(M), End(Γ(π)));

KerOb = Lsym
C∞(M)(X(M), End(Γ(π))).

We call this projection operator the Obata operator of skew-
symmetrization. It can explicitly be given as follows: for every
Φ ∈ LC∞(M)(X(M), End(Γ(π))),

g((Ob Φ)X(σ1), σ2) =
1
2
(g(ΦX(σ1), σ2) − g(σ1, ΦX(σ2)))

(X ∈ X(M); σ1, σ2 ∈ Γ(π)).
To sum up, we have the following
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Proposition 10. Any metric covariant derivative in a
vector bundle (π, g) can be represented in the form

DXσ =
◦
DXσ +

1
2
C0(X, σ) + (Ob Φ)X(σ); X ∈ X(M), σ ∈ Γ(π),

where
◦
D is an arbitrary covariant derivative in π, C0 is the

vectorvariant Cartan tensor of g with respect to
◦
D, Ob is the

Obata operator of skew-symmetrization, and Φ is an arbitrary
End(Γ(π))-valued tensor on M .

5.2. The Miron construction

Now we go back to the main scene of our considerations, to the
pull-back bundle π∗τ .

Lemma 11. Let a metric g and an Ehresmann connection H be
given in π∗τ . There is a unique metric covariant derivative in π∗τ which
has vanishing vertical torsion and whose horizontal torsion coincides
with the torsion of H.

For a complete proof we refer to [40] 2.51 or [31], we sketch here
only the main steps.
Step 1. We consider the Berwald derivative ∇ induced by H according

to (3.9.1).
Step 2. We introduce the (vectorvariant) h-Cartan tensor Ch of g (with

respect to H) by means of the musical relation

g
(
Ch

(
X̃, Ỹ

)
, Z̃

)
= (∇HX̃g)

(
Ỹ , Z̃

)
; X̃, Ỹ , Z̃ ∈ X(π).

Step 3. Using Christoffel’s trick, we define two further vectorvariant

tensors
◦
C and

◦
Ch along π determined by the conditions

(5.2.1)

g
(◦
C
(
X̃, Ỹ

)
, Z̃

)
= g

(
C
(
X̃, Ỹ

)
, Z̃

)
+ g

(
C
(
Ỹ , Z̃

)
, X̃

)
− g

(
C
(
Z̃, X̃

)
, Ỹ

)
and

(5.2.2)

g
(◦
Ch

(
X̃, Ỹ

)
, Z̃

)
= g

(
Ch

(
X̃, Ỹ

)
, Z̃

)
+g

(
Ch

(
Ỹ , Z̃

)
, X̃

)
−g

(
Ch

(
Z̃, X̃

)
, Ỹ

)
,

where X̃, Ỹ , Z̃ are vector fields along π, and C is the Cartan

tensor of g (4.3). It can be seen at once that
◦
C and

◦
Ch are both

symmetric.
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Step 4. We define the desired covariant derivative operator D by the
following rules for calculation:

DiX̃ Ỹ := ∇iX̃ Ỹ +
1
2

◦
C
(
X̃, Ỹ

)
, DHX̃ Ỹ := ∇HX̃ Ỹ +

1
2

◦
Ch

(
X̃, Ỹ

)
(5.2.3) (

X̃, Ỹ ∈ X(π)
)
.

It can be checked immediately that D is indeed a metric derivative,
and has the properties

T v(D) = 0, T (D) ◦ (H×H) = T (∇) ◦ (H×H).

We call the covariant derivative obtained in this way the Miron de-
rivative arising from g and H. The idea, formulated here intrinsically,
is due to Radu Miron. In his paper [33] he started from a Miron metric
g and the Barthel connection of the associated Finsler manifold (M, L),

L := 1
2g(δ, δ). Using an induced chart on

◦
TM , he determined the coordi-

nate expression of the Barthel connection, defined the tensors
◦
C and

◦
Ch

in terms of the components of g, and, finally, he deduced the Christoffel
symbols of D.

If, in particular, (M, L) is a Finsler manifold, HL is the Barthel con-
nection of (M, L), then the Miron derivative arising from gL := ∇v∇vL
is called the Cartan derivative in (M, L). In this case (5.2.3) reduces to

(5.2.4) DiX̃ Ỹ = ∇iX̃ Ỹ +
1
2
C
(
X̃, Ỹ

)
, DHLX̃ Ỹ := ∇HLX̃ Ỹ +

1
2
Ch

(
X̃, Ỹ

)
,

where C is the Cartan tensor of gL (and hence it is symmetric), and
Ch

�

(
X̃, Ỹ , Z̃

)
:=

(
∇HLX̃gL

) (
Ỹ , Z̃

)
. Then Ch is also (totally) symmetric.

In particular, for any basic vector fields X̂, Ŷ along
◦
τ we have

DXv Ŷ =
1
2
C
(
X̂, Ŷ

)
, DXhL Ŷ = VL

[
XhL , Y v

]
+

1
2
Ch

(
X̂, Ŷ

)
(subscript L refers to objects derived from HL).

5.3. An algebraic lemma
Lemma 12. Let K be a commutative ring with a unit element and

with characteristic different to 2. Let V be a K-module and V ∗ its dual
module. Suppose that f : V → V ∗ is an isomorphism, and the bilinear
function

〈 , 〉 : V × V → K, (v, w) �→ 〈v, w〉 := f(v)(w)
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is symmetric. Then for every skew-symmetric K-bilinear map
ω : V × V → V there is a unique K-bilinear map ψ : V × V → V such
that

(i) ∀u, v, w ∈ V : 〈ψ(u, v), w〉 + 〈v, ψ(u, w)〉 = 0,
(ii) ∀v, w ∈ V : ω(v, w) = ψ(v, w) − ψ(w, v).

This lemma is taken from the monograph [15], where (in section
7.26) it plays a crucial role in the proof of the following fundamental re-
sult, the so-called Ricci lemma: on every pseudo-Riemannian manifold
there is a unique metric covariant derivative, the Levi-Civita derivative,
with vanishing torsion. In what follows, we shall present several gener-
alizations of Ricci’s lemma, applying also Lemma 12.

5.4. Metric v-covariant derivatives
We begin with a reasonable axiomatization of the basic properties

of the canonical v-covariant derivative ∇v (see 2.7).
By a v-covariant derivative operator in π∗τ we mean a map

Dv : X(π) × X(π) → X(π),
(
X̃, Ỹ

)
�→ Dv

X̃
Ỹ

which is C∞(
T̃M

)
-linear in its first variable, additive in its second vari-

able, and satisfies

Dv
X̃

FỸ =
((

iX̃
)
F

)
Ỹ + FDv

X̃
Ỹ ; X̃, Ỹ ∈ X(π), F ∈ C∞(

T̃M
)
.

Then the maps Dv
X̃

: X(π) → X(π), Ỹ �→ Dv
X̃

Ỹ can be uniquely extended
to any tensor along π, to be a tensor derivation ([40], 2.42). Obviously,
any covariant derivative operator D in π∗τ leads to a v-covariant deriv-
ative given by

Dv
X̃

Ỹ := DiX̃ Ỹ ; X̃, Ỹ ∈ X(π).

This suggests to define the torsion T (Dv) of Dv on the analogy of (3.5.2):

T (Dv)
(
X̃, Ỹ

)
:= Dv

X̃
Ỹ − Dv

Ỹ
X̃ − i−1

[
iX̃, iỸ

]
; X̃, Ỹ ∈ X(π).

Given a metric g in π∗τ , Dv is said to be metric if Dvg = 0, i.e.,(
iX̃

)
g
(
Ỹ , Z̃

)
= g

(
Dv

X̃
Ỹ , Z̃

)
+ g

(
Ỹ , Dv

X̃
Z̃

)
for all X̃, Ỹ , Z̃ ∈ X(π).

Lemma 13. Let g be a metric in π∗τ . There is a unique metric
v-covariant derivative in π∗τ whose torsion vanishes.
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Proof. The existence is clear from the Miron construction: if
◦
C is

the vectorvariant tensor given by (5.2.1), and

Dv
X̃

Ỹ := ∇v
X̃

Ỹ +
1
2

◦
C
(
X̃, Ỹ

)
,

then Dv is a metric v-covariant derivative.
To show the uniqueness, suppose that D̃v is another metric v-

covariant derivative in π∗τ such that T
(
D̃v

)
= 0. Let ψv be the dif-

ference tensor of Dv and D̃v defined by

ψ
(
X̃, Ỹ

)
:= Dv

X̃
Ỹ − D̃v

X̃
Ỹ ; X̃, Ỹ ∈ X(π).

Since Dv and D̃v are both metric derivatives, for any vector fields
X̃, Ỹ , Z̃ along π we have

0 =
(
Dv

X̃
g
) (

Ỹ , Z̃
)

=
(
iX̃

)
g
(
Ỹ , Z̃

)
− g

(
Dv

X̃
Ỹ , Z̃

)
− g

(
Ỹ , Dv

X̃
Z̃

)
= g

(
D̃v

X̃
Ỹ , Z̃

)
+ g

(
Ỹ , D̃v

X̃
Z̃

)
− g

(
Dv

X̃
Ỹ , Z̃

)
− g

(
Ỹ , Dv

X̃
Z̃

)
= −g

(
ψv

(
X̃, Ỹ

)
, Z̃

)
− g

(
Ỹ , ψv

(
X̃, Z̃

))
.

On the other hand, the vanishing of T (Dv) and T
(
D̃v

)
yields

0 = Dv
X̂

Ŷ − Dv
Ŷ

X̂ = D̃v
X̂

Ŷ + ψv
(
X̂, Ŷ

)
− D̃v

Ŷ
X̂ − ψv

(
Ŷ , X̂

)
= ψv

(
X̂, Ŷ

)
− ψv

(
Ŷ , X̂

)
for any vector fields X, Y on M . Thus ψv satisfies the conditions of
Lemma 12 with the choice ω := 0, therefore ψv = 0 and hence D̃v =
Dv.

5.5. A characterization of the Cartan derivative
Now we present a deduction of the existence and uniqueness of Car-

tan’s covariant derivative without a prior specification of an Ehresmann
connection. This approach to Cartan’s derivative can be found e.g. in
Abate and Patrizio’s book [1], but our proof is strongly different and
completely coordinate-free.

In this subsection we shall work on a Finsler manifold (M, L). The
vectorvariant Cartan tensor, the Barthel connection and and the Cartan
derivative of (M, L) will be denoted by C, HL and D, respectively. Some
objects determined by (M, L) alone will be distinguished by the subscript
L.

Lemma 14. Let H be an Ehresmann connection and D̃ be a metric
covariant derivative in

◦
τ∗τ . Suppose that the vertical torsion T v

(
D̃

)
and
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the horizontal torsion T̃ := T
(
D̃

)
◦ (H×H) of D̃ vanish. Then we have

for all X̃, Ỹ ∈ X
(◦
τ )

(5.5.1) D̃HX̃ Ỹ = DHX̃ Ỹ +
1
2
(
C
(
X̃, P Ỹ

)
− P ∗C

(
X̃, Ỹ

))
,

where P is the difference tensor of H and HL, and P ∗ is the adjoint of
P with respect to the Finsler metric gL.

Proof. Let ψh be the difference tensor of the horizontal part of D̃
and D, i.e., let

ψh
(
X̃, Ỹ

)
:= D̃HX̃ Ỹ − DHX̃ Ỹ ; X̃, Ỹ ∈ X

(◦
τ
)
.

First we show that ψh satisfies conditions (i), (ii) of Lemma 12 with
ω given by

ω
(
X̃, Ỹ

)
:=

1
2
(
C
(
X̃, P Ỹ

)
− C

(
Ỹ , P X̃

))
; X̃, Ỹ ∈ X

(◦
τ
)
.

Since both D̃ and D are metric, for any sections X̃, Ỹ , Z̃ ∈ X
(◦
τ
)

we
have

0 =
(
D̃HLX̃g

)(
Ỹ , Z̃

)
=

(
HLX̃

)
g
(
Ỹ , Z̃

)
− g

(
D̃HLX̃ Ỹ , Z̃

)
− g

(
Ỹ , D̃HLX̃ Z̃

)
= g

(
DHLX̃ Ỹ − D̃HLX̃ Ỹ , Z̃

)
+ g

(
Ỹ , DHLX̃ Z̃ − D̃HLX̃ Z̃

)
(∗)
= g

(
DHX̃ Ỹ − D̃HX̃ Ỹ , Z̃

)
+ g

(
Ỹ , DHX̃Z̃ − D̃HX̃ Z̃

)
= −g

(
ψh

(
X̃, Ỹ

)
, Z̃

)
− g

(
Ỹ , ψh

(
X̃, Z̃

))
,

using at the step denoted by (∗) the coincidence of Dv and D̃v assured by
Lemma 13. Thus condition (i) is satisfied. Next we apply the vanishing
of the horizontal torsions

T = T (D) ◦ (HL ×HL) and T̃ = T
(
D̃

)
◦ (H×H).
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For any vector fields X, Y on M we have

0 = T̃
(
X̂, Ŷ

)
= D̃Xh Ŷ − D̃Y hX̂ − j

[
Xh, Y h

]
= D̃XhL Ŷ − D̃Y hL X̂ − [̂X, Y ] + D̃iPX̂ Ŷ − D̃iPŶ X̂

= DXhL Ŷ − DY hL X̂ − [̂X, Y ] + ψh
(
X̂, Ŷ

)
− ψh

(
Ŷ , X̂

)
+ ∇iPX̂ Ŷ +

1
2
C
(
PX̂, Ŷ

)
−∇iPŶ X̂ − 1

2
C
(
P Ŷ , X̂

)
= T

(
X̂, Ŷ

)
+ ψh

(
X̂, Ŷ

)
− ψh

(
Ŷ , X̂

)
+ ω

(
X̂, Ŷ

)
= ψh

(
X̂, Ŷ

)
− ψh

(
Ŷ , X̂

)
+ ω

(
X̂, Ŷ

)
,

so condition (ii) is also satisfied. (In our calculation we used Lemma 13
and Miron’s construction again, as well as the fact that the canonical v-
covariant derivatives of basic vector fields vanish.) Thus Greub, Halperin
and Vanstone’s algebraic lemma implies that ψh is uniquely determined.

It remains to show that the only possible choice for ψh is the map

(5.5.2)
(
X̃, Ỹ

)
∈ X

(◦
τ
)
× X

(◦
τ
)
�→ 1

2
(
C
(
X̃, P Ỹ

)
− P ∗C

(
X̃, Ỹ

))
.

This is quite an immediate verification again. For any vector fields
X̃, Ỹ , Z̃ along

◦
τ we have

g
(
C
(
X̃, P Ỹ

)
− P ∗C

(
X̃, Ỹ

)
, Z̃

)
+ g

(
Ỹ , C

(
X̃, P Z̃

)
− P ∗C

(
X̃, Z̃

))
= g

(
C
(
X̃, P Ỹ

)
, Z̃

)
− g

(
C
(
X̃, Ỹ

)
, P Z̃

)
+ g

(
Ỹ , C

(
X̃, P Z̃

))
− g

(
P Ỹ , C

(
X̃, Z̃

))
= C�

(
X̃, P Ỹ , Z̃

)
− C�

(
X̃, Ỹ , P Z̃

)
+ C�

(
X̃, P Z̃, Ỹ

)
− C�

(
X̃, Z̃, P Ỹ

)
= 0,

due to the symmetry of C�. Thus the map (5.5.2) satisfies condition (i)
of Lemma 12. It also satisfies the second condition of the Lemma, since

1
2
(
C
(
X̃, P Ỹ

)
− P ∗C

(
X̃, Ỹ

)
− C

(
Ỹ , P X̃

)
+ P ∗C

(
Ỹ , X̃

))
=

1
2
(
C
(
X̃, P Ỹ

)
− C

(
Ỹ , P X̃

))
= ω

(
X̃, Ỹ

)
.

Proposition 15. Let (M, L) be a Finsler manifold. If H is an
Ehresmann connection and D̃ is a covariant derivative operator in

◦
τ∗τ

such that
(i) D̃ is metric;
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(ii) the vertical torsion of D̃ vanishes;
(iii) the horizontal torsion T = T

(
D̃

)
◦ (H×H) of D̃ vanishes;

(iv) D̃ is strongly associated to H,

then D̃ is the Cartan derivative and H is the Barthel connection of
(M, L).

Proof. D̃v = Dv by (i), (ii) and Lemma 13. We show that D̃h = Dh

is also true. First we note that conditions (i)–(iii) imply by the previous
lemma that DHX̃ Ỹ is given by (5.5.1). Since D̃ is strongly associated
to H, its h-deflection vanishes by Lemma 2, therefore we have for all
X̃ ∈ X

(◦
τ
)

0 = 2D̃HX̃δ = 2DHX̃δ + C
(
X̃, P δ

)
− P ∗C

(
X̃, δ

)
= 2DHLX̃δ + 2DiPX̃δ + C

(
X̃, P δ

)
= 2∇iPX̃δ + C

(
PX̃, δ

)
+ C

(
X̃, P δ

)
= 2PX̃ + C

(
X̃, P δ

)
;

applying (5.2.3), (5.2.4), the normality of gL and the fact that D is
strongly associated to HL. By the choice X̃ := δ it follows that Pδ = 0,
whence PX̃ = 0 for all X̃ ∈ X(π). This means that P = 0, therefore
H = HL and D̃ = D.

5.6. When is a metric derivative good?
This is, of course, only a heuristic question, and the possible an-

swers are context-dependent. Our answer is strongly motivated by our
experience in Finsler geometry.

In the more general context of the pull-back bundle π∗τ , a covariant
derivative operator is said to be ‘good’ (or it may be called good) if it
has some of the regularity properties formulated in 3.6. For example,
in the book of Abate and Patrizio [1], the regular covariant derivative
operators are called good covariant derivatives. The attribute refers to
the fact that the covariant derivative induces an Ehresmann connection
to which it is associated. In the metric case all geometric data have
to be determined by the metric alone, and one expects a ‘harmony’
between the metric, the covariant derivative and the induced Ehresmann
connection. From this viewpoint, Cartan’s covariant derivative and, in
particular, the Levi-Civita derivative in Riemannian geometry are ideal.
It is instructive to observe how important it is to require associatedness
in Proposition 15 in the identification of the Barthel connection.

To make a long story short, we formulate our concept of ‘goodness’
as follows: a metric derivative in π∗τ is good if it is associated to an
Ehresmann connection determined by the metric alone.
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5.7. Good metric derivatives for weakly normal Moór –
Vanstone metrics

Let g be a Moór –Vanstone metric in
◦
τ∗τ . Then (M, L), L :=

1
2g(δ, δ), is a Finsler manifold, so the Barthel connection HL induced
by the canonical spray SL of (M, L) is available to apply Miron’s con-
struction to get a candidate for a good metric derivative. It turns out,
however, that the covariant derivative so obtained has no satisfactory
relation to HL. Thus to find a good metric derivative for g one has to
search a more suitable Ehresmann connection than HL. The problem
can be formulated more efficiently as follows: find a type (1,1) ten-
sor field P along

◦
τ such that the Miron derivative arising from g and

H := HL − i ◦P be good. This reformulation can essentially be found in
the unpublished manuscript [22], where the authors could not find the
correct solution. In the sequel we shall only sketch our solution, for a
detailed account we refer to [27].

Keeping the notation just introduced, we shall also use the symbol
� for the musical isomorphism described in 4.1. We have to prescribe an
additional condition on g assuming that it is weakly normal at the same
time.

The first step towards the solution of the problem is the following
observation:

Lemma 16. Assume that g is a weakly normal Moór –Vanstone

metric in
◦
τ∗τ . We write

L

∇ for the Berwald derivative induced by the
Ehresmann connection HL. Let P be a type (1,1) tensor field along

◦
τ

such that the Ehresmann connection H := HL − i ◦P has the properties

Hδ = SL and ImH ⊂ Ker(dL).

The Miron derivative arising from g and H is strongly associated to H
if and only if for any two sections X̃, Ỹ in X

(◦
τ
)

we have

(5.7.1) g
(
(∇v

δP )
(
X̃

)
, Ỹ

)
+ g

(
X̃, (∇v

δP )
(
Ỹ

))
= −

(L

∇SLg
)(

X̃, Ỹ
)
.

Sketch of proof. By Lemma 2 (ii), we have to show that (5.7.1)
holds if and only if the Miron derivative D arising from g and H is
strongly regular and has vanishing h-deflection. In the first step, we
show that D is automatically strongly regular. If X̃, Ỹ ∈ X

(◦
τ
)
, we have

µ̃X̃ = DiX̃δ = ∇iX̃δ +
1
2

◦
C
(
X̃, δ

)
,
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g
(◦
C
(
X̃, δ

)
, Ỹ

)
= g

(
C
(
X̃, δ

)
, Ỹ

)
+ g

(
C
(
δ, Ỹ

)
, X̃

)
− g

(
C
(
Ỹ , X̃

)
, δ

)
= g

(
C
(
X̃, Ỹ

)
, δ

)
+ (∇v

δg)
(
Ỹ , X̃

)
− g

(
C
(
X̃, Ỹ

)
, δ

)
= 0,

thus µ̃ is indeed the identity map. In the second and longer step one
has to show that the h-deflection of D with respect to H vanishes if and
only if (5.7.1) holds. Since g is non-degenerate, it is enough to consider
the expression g

(
DHX̃δ, Ỹ

)
with X̃, Ỹ ∈ X

(◦
τ
)

arbitrary. By a rather
cumbersome calculation, which we omit here, one obtains

2g
(
DHX̃δ, Ỹ

)
= g

(
(∇v

δP )
(
X̃

)
, Ỹ

)
+ g

(
X̃, (∇v

δP )
(
Ỹ

))
+

( L

∇SLg
)(

X̃, Ỹ
)
,

which implies the desired equivalence.

For a detailed proof see [27] or the Thesis [26] of the first author.

Theorem 17. Notation and assumption as in the previous Lemma.
Define a type (1,1) tensor field P along

◦
τ by

(i) PX̃ := −1
2

(
iX̃

L

∇SLg
)�

+ PsX̃ + PaX̃, X̃ ∈ X
(◦
τ
)
,

where
(ii) Ps is a symmetric, Pa is a skew-symmetric type (1,1) tensor

along
◦
τ with respect to g;

(iii) Ps is homogeneous of degree 0, i.e., ∇v
δPs = 0;

(iv) ImPs and Im Pa are contained in the g-orthogonal complement
of the canonical section.

Then the Ehresmann connection H := HL − i ◦ P has the properties
(v) Hδ = SL;
(vi) ImH ⊂ Ker(dL),

and the Miron derivative D arising from g and H is strongly associated
to H, i.e.,

(vii) Dδ = V.
Conversely, if H = HL − i ◦P is an Ehresmann connection with the

properties (v) and (vi), and the Miron derivative arising from g and H
is strongly associated to H, then P is of the form (i), satisfying relations
(ii), (iii) and (iv).

Idea of the proof. In view of Lemma 16, taking into account the
fact that HL also satisfies (v) and (vi), we have to solve the following
mixed system of algebraic equations and a partial differential equation
for P :
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(viii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pδ = 0,(

iPX̃
)
L = 0,

g
(
(∇v

δP )
(
X̃

)
, Ỹ

)
+ g

(
X̃, (∇v

δP )
(
Ỹ

))
= −

(L

∇SLg
)(

X̃, Ỹ
)
;(

X̃, Ỹ ∈ X
(◦
τ
))

. As the system is linear, its general solution may be
searched as the sum of a particular solution and the general solution of
the associated homogeneous system. Fortunately, a particular solution
may be ‘found out’ quite easily: it is, roughly speaking, the map given
by the first term in the right-hand side of (i). However, the verification
of this observation needs a lengthy and troublesome calculation.

The associated homogeneous system differs to (viii) only in the third
equation, which takes the form

(ix) g
(
(∇v

δP )
(
X̃

)
, Ỹ

)
+ g

(
X̃, (∇v

δP )
(
Ỹ

))
= 0; X̃, Ỹ ∈ X

(◦
τ
)
.

Decomposing P into its symmetric part Ps and skew-symmetric part Pa,
one can show that (ix) holds if and only if Ps is homogeneous of degree
0, while the algebraic relations in (viii) are valid if and only if both the
sum and the difference of Ps and Pa are contained in the g-orthogonal
complement of δ. This concludes our sketchy proof of the Theorem.

Remark. Theorem 17 provides, in fact, a family of good metric
derivatives for a weakly normal Moór –Vanstone metric, since there is a
considerable freedom in the choice of Ps and Pa in (i). Conditions (v)
and (vi) have a clear geometric meaning. (v) assures that the geodesics
of H (see e.g. [40]) coincide with the geodesics of (M, L), while (vi)
expresses the requirement that the energy L is a first integral of the
H-horizontal vector fields.

5.8. The adjoint tensor C∗

Let first g be any metric along π∗τ and C its vectorvariant Car-
tan tensor. Choose a fixed vector field Ỹ along π, and consider the
C∞(

T̃M
)
-linear map

CỸ : X̃ ∈ X(π) �→ CỸ

(
X̃

)
:= C

(
X̃, Ỹ

)
∈ X(π).

To CỸ there corresponds a unique C∞(
T̃M

)
-linear endomorphism C∗

Ỹ
along π such that

g
(
C∗

Ỹ

(
X̃

)
, Z̃

)
= g

(
X̃, CỸ

(
Z̃

))
; X̃, Z̃ ∈ X(π).

C∗
Ỹ

is called the adjoint of CỸ . (Fixing the first variable of C, we would
obtain in this way a self-adjoint endomorphism of X(π).) Keeping in
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mind that in forming adjoints the second variable of C is fixed, occasion-
ally we shall write simply C∗(X̃, Ỹ

)
instead of C∗

Ỹ

(
X̃

)
.

Now suppose that g is weakly variational. Then C∗ satisfies

(5.8.1) C∗(δ, X̃)
= C

(
X̃, δ

)
, X̃ ∈ X(π).

Indeed, for any sections X̃, Ỹ in X(π) we have

g
(
C∗(δ, X̃)

, Ỹ
)

= g
(
C∗

X̃
(δ), Ỹ

)
= g

(
δ, CX̃

(
Ỹ

))
= g

(
C
(
Ỹ , X̃

)
, δ

) (∗)
= g

(
C
(
X̃, Ỹ

)
, δ

)
= g

(
C
(
X̃, δ

)
, Ỹ

)
,

which implies by the non-degeneracy of g the desired relation. Weak
variationality was applied at the step denoted by (∗).

5.9. A good metric derivative for a class of Miron metrics
In this subsection we shall frequently use the Miron tensor A intro-

duced in 4.3. Suppose that g is a Miron metric in
◦
τ∗τ . Then its Miron

tensor yields a self-adjoint linear transformation Av ∈ End
(
T◦

τ(v)
M

)
at

each v ∈
◦
TM by Corollary 8 because Miron metrics are weakly normal,

and weak normality implies weak variationality. For the same reason,
the adjoint tensor C∗ satisfies (5.8.1). Note finally that the canonical
section δ is an eigenvector-field of A with corresponding eigenvalue 1,
since by the weak normality of g

Aδ := δ + C(δ, δ) = δ.

The next important observation, as well as its proof, is a friend of
Lemma 14.

Lemma 18. Assume that g is a Miron metric in
◦
τ∗τ . Let H and H̃

be Ehresmann connections, D and D̃ be metric derivatives in
◦
τ∗τ such

that
(i) T v(D) = T v

(
D̃

)
= 0,

(ii) the torsion T̃ of H̃ vanishes,
(iii) the horizontal torsions T := T (D) ◦ (H×H) and T̃ := T

(
D̃) ◦(

H̃ × H̃
)

vanish.

If P is the difference tensor of H and H̃, and P ∗ is its adjoint with
respect to g, then for any two sections X̃, Ỹ in X(π) we have

DHX̃ Ỹ = D̃HX̃ Ỹ +
1
2

(
C
(
P Ỹ , X̃

)
− C

(
Ỹ , P X̃

)
+C∗(Ỹ , P X̃

)
− P ∗C∗(Ỹ , X̃

))
.

(5.9.1)
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Sketch of proof. Conditions T v
(
D̃

)
= 0, T̃ = 0 and T̃ = 0 imply

that D̃ is just the Miron derivative arising from g and H̃. Let ψh be the
difference tensor of the H-horizontal part of D and D̃, i.e., let

ψh
(
X̃, Ỹ

)
:= DHX̃ Ỹ − D̃HX̃ Ỹ ; X̃, Ỹ ∈ X

(◦
τ
)
.

Since Dv = D̃v by (i) and Lemma 13, this relation can also be written
in the form

ψh
(
X̃, Ỹ

)
:= DH̃X̃ Ỹ − D̃H̃X̃ Ỹ ; X̃, Ỹ ∈ X

(◦
τ
)
.

Using the condition that both D and D̃ are metric, a routine calculation
similar to that in the proof of Lemma 14 yields

(5.9.2) g
(
ψh

(
X̃, Ỹ

)
, Z̃

)
+ g

(
Ỹ , ψh

(
X̃, Z̃

))
= 0; X̃, Ỹ , Z̃ ∈ X

(◦
τ
)
.

Next applying our condition T = T̃ = 0, after a lengthy but quite
straightforward calculation we get for any vector fields X, Y on M

(5.9.3) ψh
(
X̂, Ŷ

)
− ψh

(
Ŷ , X̂

)
= −1

2

(◦
C
(
PX̂, Ŷ

)
−

◦
C
(
P Ŷ , X̂

))
,

where
◦
C was defined by (5.2.1). Thus the map ω given by

ω
(
X̃, Ỹ

)
:= −1

2

(◦
C
(
PX̃, Ỹ

)
−

◦
C
(
P Ỹ , X̃

))
; X̃, Ỹ ∈ X

(◦
τ
)

satisfies conditions (i), (ii) of Lemma 12, therefore it is uniquely deter-
mined by (5.9.2) and (5.9.3). Finally, an immediate (but also lengthy)
calculation shows that if ψh is given by the second term on the right-
hand side of (5.9.1), then it satisfies (5.9.2) and (5.9.3). This concludes
the proof.

Theorem 19. Let g be a positive definite Miron metric in
◦
τ∗τ .

Suppose that the self-adjoint linear transformations Av ∈ End
(
T◦

τ(v)
M

)
(
v ∈

◦
TM

)
have no eigenvalues λi, λj such that λi + λj = 0. Then there

is a unique Ehresmann connection H and a unique metric derivative D

in
◦
τ∗τ such that

(i) the vertical torsion of D vanishes;
(ii) the horizontal torsion T := T (D) ◦ (H×H) of D vanishes;
(iii) ImH ⊂ Kerµ, where µ is the deflection of D.
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Proof. Choose a fixed Ehresmann connection H̃ with vanishing tor-
sion (e.g., H̃ := HL, L = 1

2g(δ, δ)), and consider the Miron derivative D̃

arising from g and H̃. Then it satisfies the prescriptions imposed on D̃
in Lemma 18. As in the proof of Theorem 17, we look for the desired
Ehresmann connection in the form

H = H̃ + i ◦ P.

If D is a metric derivative satisfying (i) and (ii), then by the previous
Lemma its H-horizontal part acts by the rule (5.9.1), while Dv = D̃v as
we have seen in the proof of the Lemma. Thus D is uniquely determined
by (i) and (ii). Our only task is to show that the further condition (iii)
forces the existence and uniqueness of the ‘unknown’ difference tensor
P .

First we observe that condition (iii) is equivalent to the relation

(iii)∗
2g

(
µ̃hX̃, Ỹ

)
+ 2g

(
PX̃, Ỹ

)
+ g

(
C
(
PX̃, δ

)
, Ỹ

)
+g

(
C
(
Pδ, X̃

)
, Ỹ

)
− g

(
C
(
P Ỹ , X̃

)
, δ

)
= 0

for P , where µ̃h is the h-deflection of D̃ with respect to H̃; X̃, Ỹ ∈ X
(◦
τ
)
.

This can be verified by a routine, but lengthy calculation, which we
omit. Substituting X̃ := δ into (iii)∗, the last term vanishes by the weak
normality of g. Then the non-degeneracy of g yields

2µ̃hδ + 2Pδ + 2C(Pδ, δ) = 0.

With the help of the Miron tensor of g this can be written in the form

A(Pδ) = −µ̃hδ.

Due to the Miron regularity of g, A is invertible, and we get

Pδ = −A−1 ◦ µ̃h(δ).

Substituting this expression of Pδ into (iii)∗ we find

0 = 2g
(
µ̃hX̃, Ỹ

)
+ 2g

(
PX̃, Ỹ

)
+ g

(
C
(
PX̃, δ

)
, Ỹ

)
− g

(
C
(
A−1 ◦ µ̃h(δ), X̃

)
, Ỹ

)
− g

(
CX̃

(
P Ỹ

)
, δ

)
= g

(
2µ̃hX̃ + 2PX̃ + C

(
PX̃, δ

)
− C

(
A−1 ◦ µ̃h(δ), X̃

)
− P ∗C∗(δ, X̃)

, Ỹ
)
.

Again by the non-degeneracy of g, and taking into account (5.8.1), this
relation is equivalent to

2PX̃ + C
(
PX̃, δ

)
− P ∗C

(
X̃, δ

)
= C

(
A−1 ◦ µ̃h(δ), X̃

)
− 2µ̃hX̃.
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Using the Miron tensor of g, our equality can also be written in the form

(iv) (P + P ∗ + A ◦ P − P ∗ ◦ A)
(
X̃

)
= C

(
A−1 ◦ µ̃h(δ), X̃

)
− 2µ̃hX̃.

Thus we have obtained that under the condition Pδ = −A−1 ◦ µ̃h(δ)
relations (iii)∗ and (iv), and hence (iii) and (iv), are equivalent.

Now we define an endomorphism B along
◦
τ by the rule

BX̃ := C
(
A−1 ◦ µ̃h(δ), X̃

)
− 2µ̃hX̃, X̃ ∈ X

(◦
τ
)
,

and a further map Φ : End
(
X

(◦
τ
))

→ End
(
X

(◦
τ
))

by

Φ(Q) := Q + Q∗ + A ◦ Q − Q∗ ◦ A, Q ∈ End
(
X

(◦
τ
))

.

With these new ingredients our problem reduces to the solvability of the
equation

(v) Φ(X ) = B

in End
(
X

(◦
τ
))

. It has a unique solution if and only if

KerΦ = {0} ⊂ End
(
X

(◦
τ
))

,

meaning that KerΦv = {0v} ⊂ End
(
T◦

τ(v)
M

)
for all v ∈

◦
TM .

We show that Φ satisfies this criterion. Let Q ∈ KerΦ. Then for
any section X̃ along

◦
τ we have

0 = g
(
QX̃, X̃

)
+ g

(
Q∗X̃, X̃

)
+ g

(
A ◦ Q

(
X̃

)
, X̃

)
− g

(
Q∗ ◦ A

(
X̃

)
, X̃

)
= 2g

(
QX̃, X̃

)
,

showing that Q is skew-symmetric with respect to g, i.e., Q∗ = −Q.
Thus Φ(Q) = 0 reduces to

(vi) A ◦ Q + Q ◦ A = 0.

Now let v ∈
◦
TM be arbitrary. As we have learnt, Av is self-adjoint with

respect to gv. Hence, by the positive-definiteness of the metric, there
exists a gv-orthonormal basis (ei)n

i=1 of T◦
τ(v)

M consisting of eigenvectors
of Av; i.e.,

Avei = λiei; λi ∈ R, i ∈ {1, . . . , n}.
Thus (vi) yields

0 = gv((Av ◦ Qv + Qv ◦ Av)(ei), ej) = gv(Av ◦ Qv(ei), ej)

+ λigv(Qv(ei), ej) = (λi + λj)gv(Qv(ei), ej);



Ehresmann connections, metrics and good metric derivatives 305

1 � i, j � n. This implies that Q = 0 because λi + λj �= 0 by our
condition on the eigenvalues of Av. We conclude that KerΦ = 0,
hence equation (v) indeed has a unique solution P in End

(
X

(◦
τ
))

. To
complete the proof of the theorem, we have to check that P satisfies
Pδ = −A−1 ◦ µ̃h(δ). Then, as we have shown, relations ΦP = B and
(iii)∗ are equivalent, therefore H := H̃ + i ◦ P is the only Ehresmann
connection which satisfies (iii).

Substitute X̃ := δ into (iv). Since Aδ = δ, the left-hand side yields

Pδ + A(Pδ) =
(
1

X(
◦
τ)

+ A
)
Pδ.

The right-hand side can be formed as follows:

C
(
A−1 ◦ µ̃h(δ), δ

)
− 2µ̃hδ = C

(
A−1 ◦ µ̃h(δ), δ

)
− 2A

(
A−1 ◦ µ̃h(δ)

)
= C

(
A−1 ◦ µ̃h(δ), δ

)
− 2A−1 ◦ µ̃h(δ) − 2C

(
A−1 ◦ µ̃h(δ), δ

)
= −

(
C
(
A−1 ◦ µ̃h(δ), δ

)
+ A−1 ◦ µ̃h(δ)

)
− A−1 ◦ µ̃h(δ)

= −A
(
A−1 ◦ µ̃h(δ)

)
− A−1 ◦ µ̃h(δ) =

(
1

X(
◦
τ)

+ A
)(

− A−1 ◦ µ̃h(δ)
)
,

therefore we get(
1

X(
◦
τ)

+ A
)
Pδ =

(
1

X(
◦
τ)

+ A
)(

− A−1 ◦ µ̃h(δ)
)
.

Since δ is an eigenvector-field of A with corresponding eigenvalue 1,
A has no eigenvalue −1 by our condition. Hence the endomorphism
1

X(
◦
τ)

+ A is (pointwise) invertible, and we obtain the desired relation

Pδ = −A−1 ◦ µ̃h(δ).

Remark. Property (iii) in Theorem 19 may be named as the weak
associatedness of D to H. We see that the constructed covariant deriva-
tive operator is not ‘good’ in the sense of 5.6, but it is ‘nearly good’. If,
in particular, D proves to be regular, then it is associated to H, and so
it becomes a good metric derivative. It can be shown by an easy calcu-
lation that this occurs if and only if the metric satisfies the additional
condition that the tensor

X̃ ∈ X
(◦
τ
)
�→ 1

2
C
(
δ, X̃

)
is (pointwise) invertible.
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[41] J. Szilasi and Cs. Vincze, A new look at Finsler connections and special
Finsler manifolds, Acta Math. Acad. Paedagog. Nyházi., 16 (2000), 33–
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