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Abstract.We prove that a di�eomorphism of a manifold with an Ehresmann
connection is an automorphism of the Ehresmann connection, if and only if, it
is a totally geodesic map (i.e., sends the geodesics, considered as parametrized
curves, to geodesics) and preserves the strong torsion of the Ehresmann connec-
tion. This result generalizes and to some extent strengthens the classical theorem
on the automorphisms of a D-manifold (manifold with covariant derivative).

1 Introduction

It is well-known (and almost trivial) that two covariant derivative operators on
a manifold are equal, if and only if, they have the same geodesics and equal
torsion tensors. Heuristically, this implies that a di�eomorphism of a manifold
with a covariant derivative is an automorphism of the covariant derivative, if
and only if, it is a totally geodesic map (i.e. sends geodesics, considered as
parametrized curves, to geodesics) and \preserves the torsion". A formal proof
of this conceptually important result may be found e.g. in a celebrated paper of
J. Vilms [14] for the torsion-free case.
Here we shall investigate similar questions for manifolds endowed with an Ehres-
mann connection. Briey, by an Ehresmann connection over a manifold M we
mean a �bre preserving, �brewise linear map from TM ×M TM into TTM ,
which is a right inverse of the canonical surjection TTM → TM ×M TM and
smooth over

◦
TM ×M TM , where

◦
TM is the bundle of the nonzero tangent

vectors to M (confer C1{C4 in Section 6). In his inuential paper [7], J. Gri-
fone introduced the concept of strong torsion of an Ehresmann connection and
proved that an Ehresmann connection is uniquely determined by its strong tor-
sion and geodesics. This result makes it plausible that a totally geodesic map of
a manifold with an Ehresmann connection which \preserves the strong torsion"
is an automorphism of the Ehresmann connection (and conversely). After quite
detailed, but not too di�cult preparations we show that this is indeed true. Sur-
prisingly or not, a large part of our reasoning is based on simple \commutation
relations" concerning the push-forward operations by a di�eomorphism and the
fundamental canonical objects introduced in Section 3 on the one hand (Section
5), and some \non-canonical" commutation relations implied by an automor-
phism of an Ehresmann connection (Lemmas 7.1{7.3) on the other hand.
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Key words and phrases: Ehresmann connection, automorphism, strong torsion, totally
geodesic map.

2000 Mathematics Subject Classi�cation: 53C05, 53C22

1



In the concluding section we show that if the Ehresmann connection is homo-
geneous and of class C1 on its whole domain, and hence it canonically leads to
a covariant derivative on the base manifold, then our theorem reduces to the
classical theorem on totally geodesic maps. More precisely, it turns out that the
torsion condition of the classical theorem may be weakened to some extent { a
phenomenon, which is hidden for the traditional approach.

2 Preliminaries

We follow the notation and conventions of [11] (see also [10] and [12]) as far
as feasible. However, for the readers' convenience, in this section we �x some
terminology and recall some basic facts.
\Manifold" will always mean a connected smooth manifold of dimension n ∈ N∗
which is Hausdor� and has a countable basis of open sets. If M is a manifold,
C∞(M) will denote the ring of smooth functions on M and Di�(M) the group
of di�eomorphisms from M onto itself. τ : TM → M (simply, τ or TM) is the
tangent bundle of M . τTM denotes the canonical projection, the \foot map",
of TTM onto TM , as well as the tangent bundle of TM . If ϕ : M → N is a
smooth map, then ϕ∗ will denote the smooth map of TM into TN induced by
ϕ, the tangent map or derivative of ϕ.
The vertical lift of f ∈ C∞(M) is f v := f ◦ τ , the complete lift f c ∈ C∞(TM)
of f is de�ned by f c(v) := v(f), v ∈ TM . Using local coordinates, a short
calculation leads to the next observation which will be of use in Section 5.

Lemma 2.1 If ϕ : M → M is a smooth map and f ∈ C∞(M), then

(f ◦ ϕ)c = f c ◦ ϕ∗ .(1)

Throughout the paper, I ⊂ R will be an open interval. The velocity �eld of
a smooth curve γ : I → M is

_γ := γ∗ ◦
d

du
: I → TM ,(2)

where d
du is the canonical vector �eld on the real line. The acceleration �eld of

γ is

�γ := __γ
(2)
=

(
γ∗ ◦

d

du

)
∗
◦ d

du
= γ∗∗ ◦

(
d

du

)
∗
◦ d

du
.(3)

If γ : I → M is a smooth curve and ϕ ∈ Di�(M), then ϕ ◦ γ is also a smooth
curve, and we have

_p−−−qϕ ◦ γ = ϕ∗ ◦ _γ , �p−−−qϕ ◦ γ = ϕ∗∗ ◦ �γ .(4)

X(M) denotes the C∞(M)-module of smooth vector �elds on M . Any vector
�eld X on M determines two vector �elds on TM , the vertical lift Xv of X and
the complete lift Xc of X, characterized by

Xvf c = (Xf)v , Xcf c = (Xf)c ; f ∈ C∞(M) .(5)
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3 Canonical constructions

Let τ∗TM := TM ×M TM := {(u, v) ∈ TM × TM | τ(u) = τ(v)}, and let
π(u, v) := u for (u, v) ∈ τ∗TM . Then π is a vector bundle with total space
τ∗TM and base space TM , the pull-back of τ : TM → M over τ . The C∞(TM)-
module of sections of π will be denoted by Sec(π). Any vector �eld X on M
determines a section

X̂ : v ∈ TM 7−→ (v,X ◦ τ(v)) ∈ TM ×M TM ,

called the basic section associated to X, or the lift of X into Sec(π). The module
Sec(π) is generated by the basic sections. We have a canonical section

δ : v ∈ TM 7−→ (v, v) ∈ TM ×M TM .

Generic sections of Sec(π) will be denoted by X̃, Ỹ , . . . . Starting from the slit
tangent bundle ◦

τ :
◦
TM → M , the pull-back bundle ◦

π :
◦
TM ×M TM → TM

is constructed in the same way. Omitting the routine details, we remark that
Sec(π) may naturally be embedded into the C∞(

◦
TM)-module Sec( ◦π).

There exists a canonical injective bundle map i : TM ×M TM → TTM given
by

i(u, v) := _c(0) , if c(t) := u + tv (t ∈ R) ,

and a canonical surjective bundle map

j : TTM → TM ×M TM , w ∈ TvTM 7−→ j(w) := (v, τ∗(w)) ∈ {v} × Tτ(v)M .

Then j ◦ i = 0, while J := i ◦ j is a further important canonical object, the
vertical endomorphism of TTM . i and j induce the tensorial maps

X̃ ∈ Sec(π) 7−→ iX̃ := i ◦ X̃ ∈ X(TM) ,

and

ξ ∈ X(TM) 7−→ jξ := j ◦ ξ ∈ Sec(π) ,

so J may also be interpreted as a C∞(TM)-linear endomorphism of X(TM).
Xv(TM) := iSec(π) is the module of vertical vector �elds on TM . The vertical
vector �elds form a subalgebra of the Lie algebra X(TM) at the same time. For
any vector �eld X on M we have

iX̂ = Xv , jXc = X̂ ,(6)

and hence

JXv = 0 , JXc = Xv .(7)

It follows that J2 = 0, Ker(J) = Im(J) = Xv(TM).
C := iδ is a canonical vertical vector �eld, called the Liouville vector �eld. If
X ∈ X(M) then

[Xv, C] = Xv .(8)
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4 Semisprays

By a semispray over M we mean a map S : TM → TTM satisfying the four
conditions:
SPR1. τTM ◦ S = 1TM .

SPR2. jS = δ (or, equivalently, JS = C).

SPR3. S is smooth on
◦
TM .

SPR4. S sends the zero vectors of TM to the zero vectors of TTM .
A map S : TM → TTM is said to be a spray if it has the properties SPR1{
SPR3 and satis�es the following two conditions:
SPR5. [C,S] = S, i.e., S is positive-homogeneous of degree 2.

SPR6. S is of class C1 on TM .
If S is a spray then the homogeneity condition implies that SPR4 is true auto-
matically. Notice that this concept of a spray was introduced by P. Dazord in his
Th�ese [4]. J. Grifone de�ned a semispray only by conditions SPR1{SPR3, see
[7]. A spray is said to be an a�ne spray if it is of class C2 (and hence smooth)
on TM . A�ne sprays were introduced by Ambrose, Palais and Singer [1] under
the name \spray".
If S is a semispray over M , then for any vector �eld ξ on TM we have

J [Jξ, S] = Jξ .(9)

This useful relation will be cited as Grifone's identity ; see [7], and for a simple
direct proof [13]. In particular, if X is a vector �eld on M , then

j [Xv, S] = X̂ = jXc ,(10)

therefore [Xv, S] and Xc di�er only in a vertical vector �eld. Thus it follows
that

[Xv, S] = Xc + η , η ∈ Xv(TM) .(11)

By a geodesic of a semispray S we mean a regular smooth curve γ : I → M that
satis�es the relation

�γ = S ◦ _γ .(12)

(Regularity excludes the constant geodesics.) A di�eomorphism ϕ ∈ Di�(M) is
said to be an a�nity (a�ne transformation, a�ne collineation) of a semispray
S if it \preserves the geodesics as parametrized curves". This means that if γ is
a geodesic of S, then ϕ ◦ γ remains a geodesic, i.e., �p−−−qϕ ◦ γ = S ◦ _p−−−qϕ ◦ γ. Using (3)
and (12), this relation can be written in the form

(ϕ∗∗ ◦ S − S ◦ ϕ∗) ◦ _γ = 0 .(13)

The a�nities of a semispray S form a group A�(S). By an important result
of O. Loos [9], A�(S) carries a natural Lie group structure, and the Lie group
A�(S) is at most (n2 + n)-dimensional.
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5 Push-forward of sections. Commutation for-

mulae

Recall that the push-forward of a vector �eld X ∈ X(M) by a di�eomorphism
ϕ ∈ Di�(M) is the vector �eld

ϕ#X := ϕ∗ ◦X ◦ ϕ−1 .

If ξ is a vector �eld on TM then by its push-forward by ϕ we mean the vector
�eld

(ϕ∗)#ξ := ϕ∗∗ ◦ ξ ◦ (ϕ∗)−1 .

In particular, the push-forward (ϕ∗)#S of a semispray or spray is also a semi-
spray or spray. The automorphism group of S is

Aut(S) := {ϕ ∈ Di�(M) | (ϕ∗)#S = S} .

Lemma 5.1 The automorphism group of a semispray coincides with the group
of a�nities of the semispray.

Proof. Let S be a semispray and γ : I → M a geodesic of S. If ϕ ∈ Aut(S),
then

S ◦ _p−−−qϕ ◦ γ
(4)
= S ◦ ϕ∗ ◦ _γ = ϕ∗∗ ◦ S ◦ _γ

(12)
= ϕ∗∗ ◦ �γ

(4)
= �p−−−qϕ ◦ γ ,

implying that ϕ ∈ A�(S).
The converse statement is immediate from (13) and SPR4. �

The push-forward of a section X̃ ∈ Sec(π) by ϕ ∈ Di�(M) is, by de�nition,

ϕ#X̃ = (ϕ∗ × ϕ∗) ◦ X̃ ◦ ϕ−1∗ .

It follows at once that

ϕ#δ = δ ,(14)

and, for any vector �eld X on M ,

ϕ#X̂ = ϕ̂#X .(15)

Lemma 5.2 For any vector �eld X on M and di�eomorphism ϕ ∈ Di�(M),

(ϕ∗)#Xc = (ϕ#X)c .(16)

Proof. We show that Xc and (ϕ#X)c are ϕ-related. Since Xc is ϕ-related
to (ϕ∗)#Xc, this implies the claim. X and ϕ#X are ϕ-related, so by the well-
known characterization of ϕ-relatedness (see e.g. [6], p.109, Lemma 5), for any
function f ∈ C∞(M) we have

((ϕ#X) f) ◦ ϕ = X (f ◦ ϕ) .
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Taking this into account we obtain

Xc (f c ◦ ϕ∗)
(1)
= Xc (f ◦ ϕ)c

(5)
= (X(f ◦ ϕ))c =

= ((ϕ#X)f ◦ ϕ)c
(1)
= ((ϕ#X)f)c ◦ ϕ∗

(5)
= ((ϕ#X)cf c) ◦ ϕ∗ ,

which implies that Xc and (ϕ#X)c are indeed ϕ∗-related. �

Lemma 5.3 Let ϕ ∈ Di�(M). Then

(ϕ∗)# ◦ i = i ◦ ϕ# ,(17)
ϕ# ◦ j = j ◦ (ϕ∗)# ,(18)

(ϕ∗)# ◦ J = J ◦ (ϕ∗)# .(19)

These relations may also be written in the form

ϕ∗∗ ◦ i = i ◦ (ϕ∗ × ϕ∗) ,(20)
(ϕ∗ × ϕ∗) ◦ j = j ◦ ϕ∗∗ ,(21)

ϕ∗∗ ◦ J = J ◦ ϕ∗∗ .(22)

The proof of (17) and (18) is a routine check, which we omit. (19) is an immediate
consequence of (17) and (18).
By (17) and (14), we have at once:

(ϕ∗)#C = C .(23)

Since Xv = iX̂, (20) and (15) imply

(ϕ∗)#Xv = (ϕ#X)v , X ∈ X(M) .(24)

6 Ehresmann connections

By an Ehresmann connection over M we mean a map H : TM×M TM → TTM
satisfying the following conditions:

C1. H is �bre preserving and �brewise linear, i.e., for every v ∈ TM , Hv :=
H � {v}×Tτ(v)M is a linear map from {v}×Tτ(v)M ∼= Tτ(v)M into TvTM .

C2. j ◦H = 1TM×M TM , i.e., \H splits".

C3. H is smooth over
◦
TM ×M TM .

C4. If o : M → TM is the zero vector �eld, then H(o(p), v) = (o∗)p(v), for all
p ∈ M and v ∈ TpM .
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If H is an Ehresmann connection over M , then there exists a unique �bre
preserving, �brewise linear map V : TTM → TM ×M TM , smooth over T

◦
TM ,

such that
V ◦ i = 1TM×M TM , Ker(V) = Im(H) .

V is called the vertical map associated to H. h := H ◦ j and v := i ◦ V =
1TTM − h are projection operators on TTM such that h ◦ v = v ◦ h = 0 and
Im(h)⊕ Im(v) = TTM . An Ehresmann connection H and its associated maps
V, h, v include tensorial maps at the level of sections, denoted by the same
symbols. Xh(TM) := H(X(TM)) is the module of horizontal vector �elds on
TM , and

Xh := H(X̂)
(6)
= H(jXc) = hXc

is the horizontal lift of the vector �eld X ∈ X(M) with respect to H. SH := H◦δ
is a semispray, called the associated semispray to H. We have

h [C,SH] = SH .(25)

Indeed, J ([C,SH]− SH)
(9)
= C−JSH = 0, so [C,SH]−SH is vertical, therefore

0 = h ([C,SH]− SH) = h [C,SH]−H ◦ j ◦H ◦ δ =
= h [C,SH]−H ◦ δ = h [C,SH]− SH

whence (25).
A regular smooth curve γ : I → M is a geodesic of the Ehresmann connection
H if V ◦ �γ = 0, i.e., if the acceleration vector �eld of γ is horizontal with respect
to H. It may easily be shown (see [11], 3.3, Prop.1) that the geodesics of an
Ehresmann connection coincide with the geodesics of its associated semispray.
If M is a manifold with an Ehresmann connection H, then a di�eomorphism of
M is said to be an a�nity (a�ne collineation, or, by J. Vilms's terminology [14],
a totally geodesic map) if it preserves the geodesics considered as parametrized
curves (confer end of Section 4). We denote by A�(H) the group of these trans-
formations. The result cited above may now be reformulated as follows:

Lemma 6.1 Let M be a manifold with Ehresmann connection H, and let S :=
H ◦ δ. Then A�(H) = A�(S).

Any semispray S over M induces an Ehresmann connection HS over M such
that for all X ∈ X(M),

HS(X̂) =
1
2
(Xc + [Xv, S])(26)

(Crampin's formula, appeared �rst in [2], p.179). The semispray �S := HS ◦ δ
di�ers from S in general; �S = S if and only if [C,S] = S, i.e., if S is homogeneous
of degree 2.
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An Ehresmann connection H determines a covariant derivative operator ∇ in
the pull-back bundle π by the rule

∇ξỸ := j
[
vξ,HỸ

]
+ V

[
hξ, iỸ

]
; ξ ∈ X(TM), Ỹ ∈ Sec(π) .

∇ is said to be the Berwald derivative induced by H. Its v-part ∇v and h-part
∇h are de�ned by

∇v

X̃
Ỹ := ∇

iX̃ Ỹ = j
[
iX̃,HỸ

]
(27)

and

∇h

X̃
Ỹ := ∇HX̃ Ỹ = V

[
HX̃, iỸ

]
(28)

(X̃, Ỹ ∈ Sec(π)). Actually, the v-Berwald derivative ∇v does not depend on
the choice of the Ehresmann connection since the di�erence of two Ehresmann
connections is a vertical valued tensor, the Lie bracket of two vertical vector
�elds is vertical, and j kills the vertical vector �elds. If X and Y are vector
�elds on M , then (27) and (28) reduce to

∇v

X̂
Ŷ = ∇Xv Ŷ = 0(29)

and

i∇h

X̂
Ŷ = i∇Xh Ŷ =

[
Xh, Y v

]
.(30)

The importance of the Berwald derivative lies, among others, in the fact that
the basic geometric data (torsions, curvatures, etc.) of an Ehresmann connection
H may conveniently be de�ned in terms of the Berwald derivative induced by
H. In this paper we need only the following:

t := ∇hδ − the tension of H,(31)

T(X̃, Ỹ ) := ∇h

X̃
Ỹ −∇h

Ỹ
X̃ − j

[
HX̃,HỸ

]
− the torsion of H,(32)

Ts := t+ iδT − the strong torsion of H(33)

(∇hδ(X̃) := ∇h

X̃
δ, iδT(X̃) := T(δ, X̃); X̃, Ỹ ∈ Sec(π)).

We may rewrite these de�nitions in terms of the values on basic sections X̂, Ŷ
as follows:

t(X̂) = V
[
Xh, C

]
or it(X̂) =

[
Xh, C

]
,(34)

iT(X̂, Ŷ ) =
[
Xh, Y v

]
−

[
Y h, Xv

]
− [X, Y ]v ,(35)

Ts(X̂) = V [S, Xv]− j
[
S, Xh

]
, S := H ◦ δ .(36)

An Ehresmann connection is said to be homogeneous if its tension vanishes.
Since

it(δ) = i∇Hδδ
(28)
= v [Hδ, C] = v [S, C] = [S, C]− h [S, C]

(25)
= S − [C,S] ,
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the semispray S := H ◦ δ associated to H is homogeneous of degree 2, if and
only if, t(δ) = 0.
Consider the Ehresmann connection HS induced by S = H ◦ δ according to
(26). It may be shown (see [10], Prop.4) that

H −HS = i ◦ 1
2
Ts .

This relation clari�es the meaning of the strong torsion as well as implies that
an Ehresmann connection is uniquely determined by its associated semispray
and strong torsion (confer [7], Th�eor�eme I.55 and [5], Prop.4.8.1).

7 Automorphisms of Ehresmann connections

Throughout this section H is an Ehresmann connection over M .

We begin with a simple remark. If ϕ ∈ Di�(M) and

ϕ#H := ϕ−1∗∗ ◦H ◦ (ϕ∗ × ϕ∗) ,

then ϕ#H is also an Ehresmann connection over M . Indeed,

j ◦ ϕ#H = j ◦ ϕ−1∗∗ ◦H ◦ (ϕ∗ × ϕ∗)
(21)
= (ϕ−1∗ × ϕ−1∗ ) ◦ j ◦H ◦ (ϕ∗ × ϕ∗)

C2=
= (ϕ−1∗ × ϕ−1∗ ) ◦ (ϕ∗ × ϕ∗) = 1TM×M TM ,

so ϕ#H satis�es C2, while the remaining axioms hold immediately. ϕ#H is said
to be the pull-back of H by ϕ. If ϕ#H = H, i.e.,

ϕ∗∗ ◦H = H ◦ (ϕ∗ × ϕ∗) ,(37)

then ϕ is called an automorphism of H. Aut(H) :=
{
ϕ ∈ Di�(M) | ϕ#H = H

}
is the automorphism group of H.

Lemma 7.1 For a di�eomorphism ϕ ∈ Di�(M) the following are equivalent:

(i) ϕ ∈ Aut(H) , (ii) ϕ∗∗ ◦ h = h ◦ ϕ∗∗ , (iii) ϕ∗∗ ◦ v = v ◦ ϕ∗∗ ,

(iv) (ϕ∗ × ϕ∗) ◦ V = V ◦ ϕ∗∗ , (v) (ϕ∗)#Xh = (ϕ#X)h for all X ∈ X(M) .

Proof. Since h := H◦j, the equivalence of (i) and (ii) is a consequence of (21),
while the equivalence of (ii) and (iii) is obvious. The equivalence (iii) ⇐⇒ (iv)
follows at once from (20). Finally,

(ϕ∗)#Xh = (ϕ#X)h
(15)⇐⇒ ϕ∗∗ ◦H ◦ X̂ ◦ ϕ−1∗ = H ◦ (ϕ∗ × ϕ∗) ◦ X̂ ◦ ϕ−1∗ ⇐⇒

⇐⇒ ϕ∗∗ ◦H ◦ X̂ = H ◦ (ϕ∗ × ϕ∗) ◦ X̂ ⇐⇒ ϕ∗∗ ◦H = H ◦ (ϕ∗ × ϕ∗) ,

so (i) and (v) are also equivalent. �
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We recall that if D : X(TM) × Sec(π) → Sec(π) is a covariant derivative
operator in π, then a di�eomorphism ϕ ∈ Di�(M) is said to be an automorphism
of D if

ϕ#DξỸ = D(ϕ∗)#ξϕ#Ỹ ; ξ ∈ X(TM), Ỹ ∈ Sec(π) .

The group of automorphisms of D is denoted by Aut(D).

Lemma 7.2 If ∇ is the Berwald derivative induced by H, then

Aut(H) ⊂ Aut(∇) .

Proof. Let ϕ ∈ Aut(H). It is enough to check that for any vector �elds X, Y
on M ,

∇(ϕ∗)#Xvϕ#Ŷ = 0 and ∇(ϕ∗)#Xhϕ#Ŷ = ϕ#∇Xh Ŷ .

The �rst relation is an immediate consequence of (15), (24) and (29). The second
needs an easy veri�cation:

ϕ#∇Xh Ŷ
(28)
= (ϕ∗ × ϕ∗) ◦ V

[
Xh, Y v

]
◦ ϕ−1∗

Lemma 7.1=

= V ◦ ϕ∗∗ ◦
[
Xh, Y v

]
◦ ϕ−1∗ = V ◦ (ϕ∗)#

[
Xh, Y v

]
=

= V
[
(ϕ∗)#Xh, (ϕ∗)#Y v

] (24), Lemma 7.1
= V

[
(ϕ#X)h, (ϕ#Y )v

] (28)
=

= ∇(ϕ#X)h ϕ̂#Y
(15), Lemma 7.1

= ∇(ϕ∗)#Xhϕ#Ŷ ,

as was to be shown. �

Lemma 7.3 If ϕ ∈ Aut(H), then

ϕ# ◦ t = t ◦ ϕ# , ϕ# ◦T = T ◦ (ϕ# × ϕ#) , ϕ# ◦Ts = Ts ◦ ϕ# .

Proof. We verify the �rst relation. The second may be obtained similarly,
while the third is a consequence of the �rst two.
Let X be a vector �eld on M . Then

ϕ#t(X̂) = ϕ# (∇Xhδ) Lemma 7.2= ∇(ϕ∗)#Xhϕ#δ
(14), Lemma 7.1

=

= ∇(ϕ#X)hδ = t(ϕ#X̂) ,

hence ϕ# ◦ t = t ◦ ϕ#. �

Lemma 7.4 If ϕ ∈ Aut(H), then ϕ ∈ Aut(SH), where SH := H ◦ δ is the
semispray associated to H. Conversely, if S is a semispray over M and HS is
the Ehresmann connection induced by S, then Aut(S) ⊂ Aut(HS).
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Proof. If ϕ ∈ Aut(H), then

ϕ∗∗ ◦ SH ◦ ϕ−1∗ = ϕ∗∗ ◦H ◦ δ ◦ ϕ−1∗
(37)
=

= H ◦ (ϕ∗ × ϕ∗) ◦ δ ◦ ϕ−1∗
(14)
= H ◦ δ = SH ,

so ϕ ∈ Aut(SH).
Now let S be a semispray over M and ϕ ∈ Aut(S). For any vector �eld X on
M ,

ϕ∗∗ ◦HS(X̂)
(26)
=

1
2
(ϕ∗∗ ◦Xc + ϕ∗∗ ◦ [Xv, S]) =

=
1
2

(
ϕ∗∗ ◦Xc ◦ ϕ−1∗ + ϕ∗∗ ◦ [Xv, S] ◦ ϕ−1∗

)
◦ ϕ∗ =

=
1
2
((ϕ∗)#Xc + (ϕ∗)# [Xv, S]) ◦ ϕ∗

(16),(24)
=

=
1
2
((ϕ#X)c + [(ϕ#X)v, (ϕ∗)#S]) ◦ ϕ∗

cond.=

=
1
2
((ϕ#X)c + [(ϕ#X)v, S]) ◦ ϕ∗ = HS(ϕ̂#X) ◦ ϕ∗

(15)
=

= HS ◦ ϕ# ◦ X̂ ◦ ϕ∗ = HS ◦ (ϕ∗ × ϕ∗) ◦ X̂ ,

which proves the second claim. �

Now we obtain the results we were striving for.

Theorem 7.5 A di�eomorphism ϕ of M is an automorphism of the Ehresmann
connection H, if and only if, it is an automorphism of the associated semispray
S := H ◦ δ and ϕ# ◦Ts = Ts ◦ ϕ#.

Proof. By Lemma 7.3 and the �rst part of Lemma 7.4, the conditions are
necessary. To prove the su�ciency, let ϕ ∈ Aut(S) and suppose that ϕ# ◦Ts =
Ts ◦ ϕ#. Then, for any vector �eld X on M ,

ϕ#Ts(X̂)
(36)
= ϕ#

(
V [S, Xv]− j

[
S, Xh

]) (18)
=

= ϕ#V [S, Xv]− j ◦ (ϕ∗)#
[
S, Xh

] cond.= ϕ#V [S, Xv]− j
[
S, (ϕ∗)# ◦H ◦ X̂

]
.

On the other hand,

Ts(ϕ#X̂)
(15)
= Ts(ϕ̂#X)

(36)
= V [S, (ϕ#X)v]− j

[
S, H ◦ ϕ̂#X

] (15),(24)
=

= V [S, (ϕ∗)#Xv]− j
[
S, H ◦ ϕ# ◦ X̂

] cond.=

= V ◦ (ϕ∗)# [S, Xv]− j
[
S, H ◦ ϕ# ◦ X̂

]
.

So our second condition ϕ# ◦Ts = Ts ◦ ϕ# implies that

(ϕ# ◦ V− V ◦ (ϕ∗)#) [S, Xv] = j
[
S, ((ϕ∗)# ◦H −H ◦ ϕ#) X̂

]
,
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or, equivalently, that

i ◦ (ϕ# ◦ V− V ◦ (ϕ∗)#) [S, Xv] = J
[
S, ((ϕ∗)# ◦H −H ◦ ϕ#) X̂

]
.(38)

On the left-hand side of (38)

i ◦ (ϕ# ◦ V− V ◦ (ϕ∗)#) = (ϕ∗)# ◦ v − v ◦ (ϕ∗)# .

On the right-hand side,

((ϕ∗)# ◦H −H ◦ ϕ#) X̂
(10)
= ((ϕ∗)# ◦H ◦ j−H ◦ ϕ# ◦ j)Xc (18)

=
= ((ϕ∗)# ◦ h− h ◦ (ϕ∗)#)Xc = (v ◦ (ϕ∗)# − (ϕ∗)# ◦ v)Xc ,

so (38) takes the form

((ϕ∗)# ◦ v − v ◦ (ϕ∗)#) [S,JXc] = −J [S, ((ϕ∗)# ◦ v − v ◦ (ϕ∗)#)Xc] .(39)

Since

J ((ϕ∗)#vXc) = J ◦ ϕ∗∗ ◦ vXc ◦ ϕ−1∗
(22)
=

= ϕ∗∗ ◦ J(vXc) ◦ ϕ−1∗ = 0 ,

it follows that (ϕ∗)#vXc is vertical, and hence ((ϕ∗)# ◦ v − v ◦ (ϕ∗)#)Xc is
also vertical. Thus, applying Grifone's identity (9), we �nd that (39) is equivalent
to

((ϕ∗)# ◦ v − v ◦ (ϕ∗)#) [S,JXc] = ((ϕ∗)# ◦ v − v ◦ (ϕ∗)#)Xc .(40)

Here, by relation (11),

[S,JXc] = − [Xv, S] = −Xc + η , η ∈ Xv(TM) .

However, ((ϕ∗)# ◦ v − v ◦ (ϕ∗)#) η = 0, since for any vector �eld Y on M ,

((ϕ∗)# ◦ v − v ◦ (ϕ∗)#)Y v = (ϕ∗)#Y v − v ((ϕ∗)#Y v)
(24)
=

= (ϕ#Y )v − v(ϕ#Y )v = 0 .

So relation (40) takes the form

− ((ϕ∗)# ◦ v − v ◦ (ϕ∗)#)Xc = ((ϕ∗)# ◦ v − v ◦ (ϕ∗)#)Xc ,

from which it follows that (ϕ∗)#◦v◦Xc = v◦(ϕ∗)#Xc. Hence ϕ∗∗◦v = v◦ϕ∗∗,
and we may now apply Lemma 7.1 to conclude the proof. �

Corollary 7.6 If M is a manifold with an Ehresmann connection H, then a
di�eomorphism ϕ of M is an automorphism of H, if and only if, ϕ is an a�nity,
i.e., preserves the geodesics of H, and ϕ#◦Ts = Ts◦ϕ#, where Ts is the strong
torsion of H.

Proof. Let S := H ◦ δ. Since A�(S) = A�(H) by Lemma 6.1, the Corollary
is just a reformulation of the Theorem. �
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8 Discussion

Applying S. Lang's terminology [8], let M be a D-manifold, i.e., a manifold,
endowed with a covariant derivative operator D. A di�eomorphism ϕ ∈ Di�(M)
is said to be a D-automorphism if ϕ#(DXY ) = Dϕ#Xϕ#Y for all vector �elds
X, Y on M . We denote by Aut(D) the group of the D-automorphisms of a D-
manifold. In this concluding section we are going to clarify, how our Theorem
7.5 generalizes the classical theorem:
A di�eomorphism ϕ of M is a D-automorphism, if and only if, it is a totally
geodesic map and ϕ# ◦ T (D) = T (D) ◦ (ϕ# × ϕ#), where T (D) is the torsion
of D.
Suppose that H is a homogeneous Ehresmann connection over M of class C1
on TM ×M TM . Then there is a unique covariant derivative operator D on M
such that

(DXY )v =
[
Xh, Y v

]
= i∇Xh Ŷ ; X, Y ∈ X(M) ,(41)

and the geodesics of D coincide with the geodesics of H. (This fact is more or
less a folklore. It is mentioned in [12], for some more details we refer to [3].) Our
discussion is based on the following observation:

Aut(D) = Aut(H) .(42)

Indeed, if ϕ ∈ Aut(H), then

(ϕ#DXY )v
(24)
= (ϕ∗)#(DXY )v

(41)
= (ϕ∗)# ◦ i∇Xh Ŷ

(17)
=

= i ◦ ϕ#
(
∇Xh Ŷ

) Lemma 7.2= i∇(ϕ∗)#Xhϕ#Ŷ
(15), Lemma 7.2

=

= i∇(ϕ#X)h ϕ̂#Y
(41)
=

(
Dϕ#Xϕ#Y

)v
,

therefore ϕ ∈ Aut(D). Thus we have Aut(H) ⊂ Aut(D). To prove the re-
verse relation, let ϕ ∈ Aut(D). Then, for any vector �elds X, Y on M ,
(ϕ∗)#(DXY )v =

(
Dϕ#Xϕ#Y

)v, which is equivalent to[
(ϕ#X)h − (ϕ∗)#Xh, ϕ#Y v

]
= 0 .(43)

Since

J((ϕ#X)h − (ϕ∗)#Xh)
(7)
= (ϕ#X)v − J ◦ (ϕ∗)#Xh (19)

=

= (ϕ#X)v − (ϕ∗)#JXh (7)
= (ϕ#X)v − (ϕ∗)#Xv (24)

= 0 ,

the vector �eld (ϕ#X)h − (ϕ∗)#Xh is vertical. Taking this into account, by
2.4(6) in [11] relation (43) implies that (ϕ#X)h − (ϕ∗)#Xh is a vertical lift:

(ϕ#X)h − (ϕ∗)#Xh = Zv , Z ∈ X(M) .
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Now, using the homogeneity of H and relations (8) and (23), we have

Zv = [Zv, C] =
[
(ϕ#X)h − (ϕ∗)#Xh, C

]
=

= −
[
(ϕ∗)#Xh, (ϕ∗)#C

]
= −(ϕ∗)#

[
Xh, C

]
= 0 ,

whence (ϕ∗)#Xh = (ϕ#X)h. By Lemma 7.1 this implies that ϕ ∈ Aut(H) and
concludes the proof of (42).
We recall that the torsion of D is related to the torsion of H by

(T (D)(X, Y ))v = iT(X̂, Ŷ ) ; X, Y ∈ X(M) .(44)

Hence, taking into account Lemma 7.3,

ϕ ∈ Aut(H) =⇒ ϕ# ◦ T (D) = T (D) ◦ (ϕ# × ϕ#) .(45)

Summarizing, if M is endowed with a homogeneous Ehresmann connection, of
class C1 on TM ×M TM , D is the covariant derivative operator de�ned by (41)
and ϕ ∈ Di�(M), then we have the following implications:

ϕ ∈ Aut(D)
{

ϕ ∈ A�(D)
ϕ# ◦ T (D) = T (D) ◦ (ϕ# × ϕ#)

ϕ ∈ Aut(H)
{

ϕ ∈ A�(H) = A�(D)
ϕ# ◦Ts = Ts ◦ ϕ#

?

6

(42)
?

-�
Theorem 7.5

�
���

����*
(45)

From the diagram we conclude the classical characterization of the D-
automorphisms. As a by-product, it follows that the classical theorem may be
strengthened: a di�eomorphism ϕ of M is a D-automorphism, if and only if,
it is a totally geodesic map and has the property ϕ# ◦ Ts = Ts ◦ ϕ#, where
Ts = iδT, and T is related to T (D) by (44).
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