Automorphisms of line element D-manifolds
Johanna PÉk
Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O.B. 12, Hungary
E-mail: pjohanna@math.unideb.hu

Abstract

The main results of the paper generalize the following classical theorem to the setting of line element D-manifolds: the automorphisms of a covariant derivative on a manifold are exactly the affinities that leave its torsion invariant.

1 Introduction

In this paper, which is a continuation of our previous work [5], we study the automorphisms of so-called line element D-manifolds, i.e., structures consisting of a manifold M and a covariant derivative D on the pull-back of the tangent bundle $\tau: T M \rightarrow M$. The term was suggested by Serge Lang's terminology 'D-manifold' ([3], Ch. XIII). The covariant derivative we use was introduced by O. Varga ([10]) and M. Hashiguchi ([2]), independently, in terms of classical tensor calculus. Line element D-manifolds provide a unified framework for a systematic study of covariant derivative operators appearing in Finsler geometry ([2], [7]).

The main results of the paper generalize the following well-known theorem: the automorphisms of a covariant derivative on a manifold are exactly the affinities that leave its torsion invariant.

Throughout the paper we use the coordinate-free calculus elaborated in [7] by J. Szilasi and apply the main results of our previous paper ([5]). These results are briefly summarized in section 3 .

2 Preliminaries

As in [5], we follow the notation and conventions of [7] (see also [4] and [8]) as far as feasible. However, for the readers' convenience, in this section we fix some terminology and recall some basic facts.
'Manifold' will always mean a connected, second countable, Hausdorff, smooth manifold of dimension $n, n \geq 1$. If M is a manifold, $C^{\infty}(M)$ will denote the ring of smooth functions on M and $\operatorname{Diff}(M)$ the group of diffeomorphisms from M onto itself. $\tau: T M \rightarrow M$ (simply, τ or $T M$) is the tangent bundle of M. $\tau_{T M}$ denotes the canonical projection, the 'foot map', of TTM onto TM, as well as the tangent bundle of $T M$. If $\varphi: M \rightarrow N$ is a smooth map, then φ_{*} will denote the smooth map of $T M$ into $T N$ induced by φ, the tangent map or

[^0]derivative of φ.
The vertical lift of a function $f \in C^{\infty}(M)$ is $f^{\vee}:=f \circ \tau$, the complete lift $f^{c} \in C^{\infty}(T M)$ of f is defined by $f^{c}(v):=v(f), v \in T M$.
$\mathfrak{X}(M)$ denotes the $C^{\infty}(M)$-module of smooth vector fields on M. Any vector field X on M determines two vector fields on $T M$, the vertical lift X^{\vee} of X and the complete lift X^{c} of X, characterized by $X^{\vee} f^{c}=(X f)^{\vee}, X^{\vee} f^{\vee}=0$ and $X^{\mathrm{c}} f^{\mathrm{c}}=(X f)^{\mathrm{c}}, X^{\mathrm{c}} f^{\vee}=(X f)^{\mathrm{v}} ; f \in C^{\infty}(M)$. It is easy to see that $\left[X^{\mathrm{v}}, Y^{\mathrm{v}}\right]=0$ for all $X, Y \in \mathfrak{X}(M)$.

Throughout the paper, $I \subset \mathbb{R}$ will be an open interval. The velocity field of a smooth curve $\gamma: I \rightarrow M$ is $\dot{\gamma}:=\gamma_{*} \circ \frac{d}{d u}: I \rightarrow T M$, where $\frac{d}{d u}$ is the canonical vector field on the real line. The acceleration field of γ is $\ddot{\gamma}=\left(\gamma_{*} \circ \frac{d}{d u}\right)_{*} \circ \frac{d}{d u}$. If $\gamma: I \rightarrow M$ is a smooth curve and $\varphi \in \operatorname{Diff}(M)$, then we have $\overline{\varphi \circ \gamma}=\varphi_{*} \circ \dot{\gamma}$, $\stackrel{\ddot{\varphi}}{\varphi \circ \gamma}=\varphi_{* *} \circ \ddot{\gamma}$.

Let $\tau^{*} T M:=T M \times_{M} T M:=\{(u, v) \in T M \times T M \mid \tau(u)=\tau(v)\}$, and let $\tau^{*} \tau(u, v):=u$ for $(u, v) \in \tau^{*} T M$. Then $\tau^{*} \tau$ is a vector bundle with total space $\tau^{*} T M$ and base space $T M$, the pull-back of $\tau: T M \rightarrow M$ over τ. The $C^{\infty}(T M)$ module of sections of $\tau^{*} \tau$ will be denoted by $\operatorname{Sec}\left(\tau^{*} \tau\right)$. Any vector field X on M determines a section

$$
\widehat{X}: v \in T M \longmapsto(v, X \circ \tau(v)) \in T M \times_{M} T M,
$$

called the basic section associated to $X . \operatorname{Sec}\left(\tau^{*} \tau\right)$ is generated by the basic sections. We have a canonical section

$$
\delta: v \in T M \longmapsto(v, v) \in T M \times_{M} T M
$$

Generic sections in $\operatorname{Sec}\left(\tau^{*} \tau\right)$ will be denoted by $\widetilde{X}, \widetilde{Y}, \ldots$.
Starting from the slit tangent bundle $\stackrel{\circ}{\tau}: \stackrel{\circ}{T} M \rightarrow M$, the pull-back bundle $\stackrel{\circ}{\tau}^{*} \tau: \stackrel{\circ}{T} M \times_{M} T M \rightarrow T M$ is constructed in the same way. Omitting the routine details, we remark that $\operatorname{Sec}\left(\tau^{*} \tau\right)$ may naturally be embedded into the $C^{\infty}\left({ }^{\circ} M\right)$ module $\operatorname{Sec}\left(\stackrel{\circ}{\tau}^{*} \tau\right)$.
There exists a canonical injective bundle map i: $T M \times{ }_{M} T M \rightarrow T T M$ given by

$$
\mathbf{i}(u, v):=\dot{c}(0), \quad \text { if } \quad c(t):=u+t v \quad(t \in \mathbb{R})
$$

and a canonical surjective bundle map

$$
\begin{aligned}
\mathbf{j}: T T M & \rightarrow T M \times_{M} T M \\
w \in T_{v} T M \longmapsto \mathbf{j}(w) & :=\left(v, \tau_{*}(w)\right) \in\{v\} \times T_{\tau(v)} M .
\end{aligned}
$$

Then $\mathbf{j} \circ \mathbf{i}=0$, while $\mathbf{J}:=\mathbf{i} \circ \mathbf{j}$ is a further important canonical object, the vertical endomorphism of TTM. \mathbf{i} and \mathbf{j} induce the tensorial maps

$$
\begin{aligned}
& \widetilde{X} \in \operatorname{Sec}\left(\tau^{*} \tau\right) \longmapsto \mathbf{i} \widetilde{X}:=\mathbf{i} \circ \tilde{X} \in \mathfrak{X}(T M) \quad \text { and } \\
& \quad \xi \in \mathfrak{X}(T M) \longmapsto \mathbf{j} \xi:=\mathbf{j} \circ \xi \in \operatorname{Sec}\left(\tau^{*} \tau\right),
\end{aligned}
$$

so J may also be interpreted as a $C^{\infty}(T M)$-linear endomorphism of $\mathfrak{X}(T M)$. $\mathfrak{X}^{\mathrm{v}}(T M):=\operatorname{iSec}\left(\tau^{*} \tau\right)$ is the module of vertical vector fields on $T M$. The vertical vector fields form a subalgebra of the Lie algebra $\mathfrak{X}(T M)$ at the same time. For any vector field X on M we have $\mathbf{i} \widehat{X}=X^{\vee}$ and $\mathbf{j} X^{\mathrm{c}}=\widehat{X} . C:=\mathbf{i} \delta$ is a canonical vertical vector field, called the Liouville vector field on $T M$. If $\gamma: I \rightarrow M$ is a smooth curve, then

$$
\begin{equation*}
\mathbf{j} \circ \ddot{\gamma}=\delta \circ \dot{\gamma} . \tag{1}
\end{equation*}
$$

Recall that the push-forward of a vector field $X \in \mathfrak{X}(M)$ or a vector field $\xi \in \mathfrak{X}(T M)$ or a section $\widetilde{X} \in \operatorname{Sec}\left(\tau^{*} \tau\right)$ by a diffeomorphism $\varphi \in \operatorname{Diff}(M)$ is the vector field (or the section)

$$
\begin{gathered}
\varphi_{\#} X:=\varphi_{*} \circ X \circ \varphi^{-1} ; \quad\left(\varphi_{*}\right)_{\#} \xi:=\varphi_{* *} \circ \xi \circ\left(\varphi_{*}\right)^{-1} ; \\
\varphi_{\#} \widetilde{X}:=\left(\varphi_{*} \times \varphi_{*}\right) \circ \widetilde{X} \circ \varphi_{*}^{-1},
\end{gathered}
$$

where $\varphi_{*} \times \varphi_{*}:(u, v) \in T M \times_{M} T M \longmapsto\left(\varphi_{*}(u), \varphi_{*}(v)\right) \in T M \times_{M} T M$.
It follows at once that

$$
\begin{equation*}
\varphi_{\#} \delta=\delta, \quad \varphi_{\#} \widehat{X}=\widehat{\varphi_{\#} X}, \quad(X \in \mathfrak{X}(M)) \tag{2}
\end{equation*}
$$

We also have

$$
\left(\varphi_{*}\right)_{\#} \circ \mathbf{i}=\mathbf{i} \circ \varphi_{\#}, \quad \varphi_{\#} \circ \mathbf{j}=\mathbf{j} \circ\left(\varphi_{*}\right)_{\#}, \quad\left(\varphi_{*}\right)_{\#} \circ \mathbf{J}=\mathbf{J} \circ\left(\varphi_{*}\right)_{\#} ;
$$

and for any vector field X on M,

$$
\left(\varphi_{*}\right)_{\#} X^{\mathrm{c}}=\left(\varphi_{\#} X\right)^{\mathrm{c}}, \quad\left(\varphi_{*}\right)_{\#} X^{\mathrm{v}}=\left(\varphi_{\#} X\right)^{\mathrm{v}} .
$$

3 Semisprays and Ehresmann connections

A map $S: T M \rightarrow T T M$, smooth on $\stackrel{\circ}{T} M$, is said to be a semispray, if $\tau_{T M} \circ S=1_{T M}$, it sends zeros to zeros, and satisfies the condition $\mathbf{j} S=\delta$ (or, equivalently, $\mathbf{J} S=C$). By a spray we mean a semispray of class C^{1}, which is positive-homogeneous of degree two in the sense that $[C, S]=S$.
A regular curve $\gamma: I \rightarrow M$ is a geodesic of a semispray S if its velocity field is an integral curve of S, i.e., $S \circ \dot{\gamma}=\ddot{\gamma}$. A diffeomorphism $\varphi: M \rightarrow M$ is an affinity (or totally geodesic transformation) of S if it preserves the geodesics considered as parametrized curves, i.e., if

$$
\stackrel{\ddot{\circ}}{\varphi \circ \gamma}=S \circ \stackrel{\circ}{\varphi \circ \gamma}, \quad \text { for all geodesics } \gamma: I \rightarrow M .
$$

The affinities of a semispray S form a Lie group, denoted by $\operatorname{Aff}(S)$. If S is a semispray and $\varphi \in \operatorname{Diff}(M)$, then $\left(\varphi_{*}\right)_{\#} S$ is also a semispray, which remains a spray, if S is a spray. φ is called an automorphism of S, if $\left(\varphi_{*}\right)_{\#} S=S$, i.e., $\varphi_{* *} \circ S=S \circ \varphi_{*}$. $\operatorname{Aut}(S)$ denotes the group of automorphisms of S.

Lemma 3.1 ([5] Lemma 5.1) The automorphism group of a semispray coincides with the group of affinities of the semispray.

Roughly speaking, an Ehresmann connection \mathcal{H} over a manifold M is a right splitting of the canonical exact sequence

$$
0 \longrightarrow T M \times_{M} T M \xrightarrow{\mathbf{i}} T T M \xrightarrow{\mathbf{j}} T M \times_{M} T M \longrightarrow 0,
$$

smooth only on $\stackrel{\circ}{T} M \times_{M} T M$, and given on $o(M) \times_{M} T M$ by $\mathcal{H}(o(p), v):=\left(o_{*}\right)_{p}(v) ; p \in M, v \in T_{p} M$, where $o \in \mathfrak{X}(M)$ is the zero vector field. We associate to any Ehresmann connection \mathcal{H} the horizontal projector $\mathbf{h}:=\mathcal{H} \circ \mathbf{j}$, the vertical projector $\mathbf{v}=1_{T T M}-\mathbf{h}$, the vertical map $\mathcal{V}:=\mathbf{i}^{-1} \circ \mathbf{v}$ and the semispray $S_{\mathcal{H}}:=\mathcal{H} \circ \delta$. The horizontal lift of a vector field $X \in \mathfrak{X}(M)$ with respect to \mathcal{H} is $X^{\mathrm{h}}:=\mathcal{H}(\widehat{X})=\mathbf{h} X^{\mathrm{c}} \in \mathfrak{X}(\stackrel{\circ}{T} M)$.
A regular smooth curve $\gamma: I \rightarrow M$ is a geodesic of an Ehresmann connection \mathcal{H} if $\mathcal{V} \circ \ddot{\gamma}=0$ or, equivalently, if $\ddot{\gamma}(t) \in \operatorname{Im}(\mathcal{H})(t \in I)$, i.e., if the acceleration vector field of γ is horizontal with respect to \mathcal{H}.
If M is a manifold with an Ehresmann connection \mathcal{H}, then a diffeomorphism of M is said to be an affinity (affine collineation, or, by J. Vilms's terminology [11], a totally geodesic map) if it preserves the geodesics considered as parametrized curves. We denote by $\operatorname{Aff}(\mathcal{H})$ the group of these transformations.

Lemma 3.2 ([5] Lemma 6.1) If M is a manifold with an Ehresmann connection \mathcal{H}, then $\operatorname{Aff}(\mathcal{H})=\operatorname{Aff}\left(S_{\mathcal{H}}\right)$.

An Ehresmann connection \mathcal{H} determines a covariant derivative operator ∇ in the pull-back bundle $\tau^{*} \tau$ by the rule

$$
\nabla_{\xi} \widetilde{Y}:=\mathbf{j}[\mathbf{v} \xi, \mathcal{H} \widetilde{Y}]+\mathcal{V}[\mathbf{h} \xi, \mathbf{i} \widetilde{Y}] ; \quad \xi \in \mathfrak{X}(T M), \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)
$$

$\underset{\sim}{\nabla} \underset{\widetilde{Y}}{ }$ is said to be the Berwald derivative induced by \mathcal{H}. For any vector fields $\widetilde{X}, \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)$, the v-part ∇^{\vee} and the h-part ∇^{h} of the Berwald derivative are defined by
$\nabla_{\widetilde{X}}^{\vee} \widetilde{Y}:=\nabla_{\mathbf{i} \tilde{X}} \widetilde{Y}=\mathbf{j}[\mathbf{i} \widetilde{X}, \mathcal{H} \widetilde{Y}] \quad$ and $\quad \nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}:=\nabla_{\mathcal{H} \widetilde{X}} \widetilde{Y}=\mathcal{V}[\mathcal{H} \widetilde{X}, \mathbf{i} \widetilde{Y}]$.
$\mathbf{t}:=\nabla^{\mathrm{h}} \delta, \mathbf{T}(\widetilde{X}, \tilde{Y})=\nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}-\nabla_{\widetilde{Y}}^{\mathrm{h}} \tilde{X}-\mathbf{j}[\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]\left(\widetilde{X}, \tilde{Y} \in \operatorname{Sec}\left(\stackrel{\circ}{\tau}^{*} \tau\right)\right)$ and $\mathbf{T}^{\mathbf{s}}:=\mathbf{t}+i_{\delta} \mathbf{T}$ are the tension, the torsion, and the strong torsion of \mathcal{H}, respectively. \mathcal{H} is called homogeneous if its tension vanishes. In the homogeneous case the associated semispray $S_{\mathcal{H}}$ is a spray.
$\varphi^{\#} \mathcal{H}:=\varphi_{* *}^{-1} \circ \mathcal{H} \circ\left(\varphi_{*} \times \varphi_{*}\right)$ is said to be the pull-back of \mathcal{H} by φ. If $\varphi^{\#} \mathcal{H}=\mathcal{H}$, i.e., $\varphi_{* *} \circ \mathcal{H}=\mathcal{H} \circ\left(\varphi_{*} \times \varphi_{*}\right)$, then φ is called an automorphism of \mathcal{H}.

Theorem 3.3 ([5] Theorem 7.5) A diffeomorphism φ of M is an automorphism of an Ehresmann connection \mathcal{H} over M if and only if it is an automorphism of the associated semispray $S_{\mathcal{H}}$, and $\varphi_{\#} \circ \mathbf{T}^{\mathbf{s}}=\mathbf{T}^{\mathbf{s}} \circ \varphi_{\#}$.

Corollary 3.4 ([5] Cor. 7.6) If M is a manifold with an Ehresmann connection \mathcal{H}, then a diffeomorphism φ of M is an automorphism of \mathcal{H} if and only if φ is an affinity, and $\varphi_{\#}$ commutes with the strong torsion of \mathcal{H}.

4 Line element D-manifolds

By a line element D-manifold we mean a pair (M, D) consisting of a manifold M and a covariant derivative D in pull-back bundle $\tau^{*} \tau$. The v-covariant derivative D^{\vee} belonging to D is given by $D_{\widetilde{X}}^{\vee} \widetilde{Y}=D_{\mathbf{i}} \widetilde{X} \widetilde{Y}\left(\widetilde{X}, \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)\right)$. The torsion $T(D)$ of D is defined by

$$
T(D)(\xi, \eta):=D_{\xi} \mathbf{j} \eta-D_{\eta} \mathbf{j} \xi-\mathbf{j}[\xi, \eta] ; \quad \xi, \eta \in \mathfrak{X}(T M) .
$$

The vertical difference tensor \mathcal{S} of D is given by

$$
\mathcal{S}(\widetilde{X}, \widetilde{Y}):=\nabla_{\widetilde{Y}}^{\vee} \widetilde{X}-D_{\widetilde{Y}}^{v} \widetilde{X}=\mathbf{j}[\mathbf{i} \widetilde{Y}, \eta]-D_{\mathbf{i} \widetilde{Y}} \widetilde{X} ; \quad(\mathbf{j} \eta=\widetilde{X})
$$

$\left(\widetilde{X}, \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right), \eta \in \mathfrak{X}(T M)\right)$, it is also mentioned (see [1]) as the Finsler torsion of D.

Let D be a covariant derivative in $\tau^{*} \tau$. The $\binom{1}{1}$ tensors $\mu:=D \delta$ and $\mu^{\vee}:=\mu \circ \mathbf{i}$ are said to be the deflection and the v-deflection of D, respectively. We say that D is regular, if μ^{\vee} is fibrewise injective; strongly regular, if $\mu^{\vee}=1_{\operatorname{Sec}\left(\tau^{*} \tau\right)}$. If an Ehresmann connection \mathcal{H} over $\underset{\sim}{\sim}$ is also given, then we define the h-covariant derivative D^{h} by $D_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}:=D_{\mathcal{H} \widetilde{X}} \widetilde{Y}$ for all $\widetilde{X}, \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)$. Then the $\binom{1}{1}$ tensor $\mu^{\mathscr{H}}:=D^{\mathrm{h}} \delta=\mu \circ \mathcal{H}$ is said to be the \mathcal{H}-deflection of D.

Theorem and Definition 4.1 ([4] Prop. 3) If D is a regular covariant derivative in $\tau^{*} \tau$, then there is a unique Ehresmann connection \mathcal{H}_{D} over M such that the \mathcal{H}_{D}-deflection of D vanishes, and hence $\operatorname{Ker}(\mu)=\operatorname{Im}\left(\mathcal{H}_{D}\right)$. On basic vector fields \mathcal{H}_{D} acts by

$$
\mathcal{H}_{D}(\widehat{X})=X^{\mathrm{c}}-\mathbf{i}\left(\mu^{\vee}\right)^{-1} D_{X^{c}} \delta, \quad X \in \mathfrak{X}(M) .
$$

If \mathcal{H}_{D} is the Ehresmann connection induced by D, then we can define the horizontal torsion \mathcal{T}, the vertical torsion $T^{\vee}(D)$, and the horizontal difference tensor \mathcal{P} as follows: for each $\widetilde{X}, \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right) ; \xi, \eta \in \mathfrak{X}(T M)$,

$$
\begin{gather*}
\mathcal{T}(\widetilde{X}, \widetilde{Y}):=D_{\mathcal{H}_{D} \widetilde{X}} \widetilde{Y}-D_{\mathcal{H}_{D} \widetilde{Y}} \widetilde{X}-\mathbf{j}\left[\mathcal{H}_{D} \widetilde{X}, \mathcal{H}_{D} \widetilde{Y}\right], \tag{3}\\
T^{\vee}(D)(\xi, \eta):=D_{\xi} \mathcal{V}_{D} \eta-D_{\eta} \mathcal{V}_{D} \xi-\mathcal{V}_{D}[\xi, \eta]
\end{gather*}
$$

$$
\mathcal{P}(\widetilde{X}, \widetilde{Y}):=D_{\mathscr{H}_{D}} \tilde{X} \tilde{Y}-\nabla_{\mathcal{H}_{D} \tilde{X}} \tilde{Y}
$$

Then we have

$$
\begin{gather*}
\mathcal{S}(\tilde{X}, \tilde{Y})=T(D)\left(\mathcal{H}_{D} \tilde{X}, \mathbf{i} \tilde{Y}\right), \quad \tilde{X}, \tilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right), \tag{6}\\
\mathbf{T}^{\mathbf{s}}=i_{\delta} \mathcal{T}-i_{\delta} \mathcal{P} \tag{7}\\
\mathcal{P}(\widetilde{X}, \widetilde{Y})=T^{\vee}(D)\left(\mathcal{H}_{D} \widetilde{X}, \mathbf{i} \widetilde{Y}\right) \tag{8}
\end{gather*}
$$

where $\mathbf{T}^{\mathbf{s}}$ is the strong torsion of \mathcal{H}_{D}.

5 Affinities and automorphisms of line element D-manifolds

A regular smooth curve $\gamma: I \rightarrow M$ is said to be a geodesic of a line element D-manifold (M, D) if $D_{\dot{\gamma}}(\delta \circ \dot{\gamma})=0$, or equivalently (see (1))

$$
\begin{equation*}
D_{\dot{\gamma}}(\mathbf{j} \circ \ddot{\gamma})=0 \tag{9}
\end{equation*}
$$

A diffeomorphism φ is an affinity (or a totally geodesic transformation) of (M, D) if for any geodesic $\gamma: I \longrightarrow M, \varphi \circ \gamma$ is also a geodesic. The group of affinities of D is denoted by $\operatorname{Aff}(D)$.

Lemma 5.1 Let (M, D) be a regular line element D-manifold and \mathcal{H}_{D} be the Ehresmann connection induced by D. Then the geodesics of D coincide with geodesics of \mathcal{H}_{D}, therefore we have

$$
\begin{equation*}
\operatorname{Aff}(D)=\operatorname{Aff}\left(\mathcal{H}_{D}\right) \tag{10}
\end{equation*}
$$

Proof. Let $\gamma: I \rightarrow M$ be a geodesic of D. Then we have for all $t \in I$

$$
\begin{gathered}
D_{\ddot{\gamma}}(\delta \circ \dot{\gamma})(t)=0 \stackrel{\text { def }}{\Longleftrightarrow} D_{\ddot{\gamma}(t)} \delta=0 \Longleftrightarrow D \delta(\ddot{\gamma}(t))=0 \Longleftrightarrow \\
\Longleftrightarrow \ddot{\gamma}(t) \in \operatorname{Ker}(D \delta) \stackrel{4.1}{\Longleftrightarrow} \ddot{\gamma}(t) \in \operatorname{Im}\left(\mathcal{H}_{D}\right),
\end{gathered}
$$

so D and \mathcal{H}_{D} have the same geodesics.
If $\varphi \in \operatorname{Diff}(M)$ then $\left(\varphi_{*} \times \varphi_{*}, \varphi_{*}\right)$ is an automorphism of the pull-back bundle $\tau^{*} \tau$. So we may consider the pull-back of covariant derivative D of a line element D-manifold (M, D) via $\varphi_{*} \times \varphi_{*}$. This covariant derivative will be denoted simply by $\varphi^{\#} D$ (instead of $\left.\left(\varphi_{*} \times \varphi_{*}\right)^{\#} D\right)$. It is given by

$$
\left(\varphi^{\#} D\right)_{\xi} \widetilde{Y}:=\varphi_{\#}^{-1} D_{\left(\varphi_{*}\right) \# \xi} \varphi_{\#} \tilde{Y} ; \quad \xi \in \mathfrak{X}(T M), \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)
$$

or, equivalently, $\quad D_{\left(\varphi_{*}\right) \#} \varphi_{\#} \tilde{Y}=\left(\varphi_{*} \times \varphi_{*}\right) \circ\left(\varphi^{\#} D\right)_{\xi} \tilde{Y} \circ \varphi_{*}^{-1}$.
If $\varphi^{\#} D=D$, and hence $\varphi_{\#}\left(D_{\xi} \widetilde{Y}\right)=D_{\left(\varphi_{*}\right) \neq \xi} \varphi_{\#} \widetilde{Y}$ for all $\widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)$, then φ is called an automorphism of D. We denote by $\operatorname{Aut}(D)$ the group of all automorphisms of D. The following observation can be checked by an immediate calculation.

Lemma 5.2 Let (M, D) be a line element D-manifold, φ a diffeomorphism of M and $\varphi^{\#} D$ the pull-back of D. Let $\mu^{\#}$ and $\left(\mu^{v}\right)^{\#}$ denote the deflection and v-deflection of $\varphi^{\#} D$. Then $\mu^{\#}=\varphi_{\#}^{-1} \circ \mu \circ\left(\varphi_{*}\right)_{\#}$ and $\left(\mu^{\vee}\right)^{\#}=\varphi_{\#}^{-1} \circ \mu^{\vee} \circ \varphi_{\#}$. If, in particular, D is regular (or strongly regular), then $\varphi^{\#} D$ is also regular (or strongly regular). We have for all $\varphi \in \operatorname{Aut}(D)$

$$
\begin{gather*}
\varphi_{\#} \circ \mu=\mu \circ\left(\varphi_{*}\right)_{\#} \quad \text { and } \tag{11}\\
\varphi_{\#} \circ \mu^{\vee}=\mu^{v} \circ \varphi_{\#} \tag{12}
\end{gather*}
$$

Lemma 5.3 Let (M, D) be a line element D-manifold, $\varphi \in \operatorname{Diff}(M)$. If $T\left(\varphi^{\#} D\right)$ denotes the torsion of $\varphi^{\#} D$, then

$$
\varphi_{\#}\left(T\left(\varphi^{\#} D\right)(\xi, \eta)\right)=T(D)\left(\left(\varphi_{*}\right)_{\#} \xi,\left(\varphi_{*}\right)_{\#} \eta\right), \quad \xi, \eta \in \mathfrak{X}(T M)
$$

In particular, if $\varphi \in \operatorname{Aut}(D)$, then the torsion of D is invariant under φ :

$$
\varphi_{\#} \circ T(D)=T(D) \circ\left(\left(\varphi_{*}\right)_{\#} \times\left(\varphi_{*}\right)_{\#}\right)
$$

Proof.

$$
\begin{gathered}
\varphi_{\#}\left(T\left(\varphi^{\#} D\right)(\xi, \eta)\right)=\varphi_{\#}\left(\left(\varphi^{\#} D\right)_{\xi} \mathbf{j} \eta-\left(\varphi^{\#} D\right)_{\eta} \mathbf{j} \xi-\mathbf{j}[\xi, \eta]\right)= \\
=D_{\left(\varphi_{*}\right) \#} \varphi_{\#}(\mathbf{j} \eta)-D_{\left(\varphi_{*}\right)_{\#} \eta} \varphi_{\#}(\mathbf{j} \xi)-\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} \xi,\left(\varphi_{*}\right)_{\#} \eta\right]= \\
=D_{\left(\varphi_{*}\right)_{\#} \xi} \mathbf{j}\left(\left(\varphi_{*}\right)_{\#} \eta\right)-D_{\left(\varphi_{*}\right)_{\# \eta} \mathbf{j}\left(\left(\varphi_{*}\right)_{\#} \xi\right)-\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} \xi,\left(\varphi_{*}\right)_{\#} \eta\right]=}=T(D)\left(\left(\varphi_{*}\right)_{\#} \xi,\left(\varphi_{*}\right)_{\#} \eta\right)
\end{gathered}
$$

Proposition 5.4 Let (M, D) be a line element D-manifold and $\varphi \in \operatorname{Diff}(M)$. φ is an automorphism of D if and only if for every curve $c: I \rightarrow T M$ whose velocity field is extendible we have

$$
\begin{equation*}
D_{\varphi_{*} \circ c}\left(\varphi_{\#} \tilde{Y}\right) \circ\left(\varphi_{*} \circ c\right)=\left(\varphi_{*} \times \varphi_{*}\right) D_{c}(\tilde{Y} \circ c), \quad \tilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right) \tag{13}
\end{equation*}
$$

Proof. (a) Let φ be an automorphism of D. Consider a curve $c: I \rightarrow T M$, and suppose that there exists a vector field ξ defined in a neighbourhood of $\operatorname{Im}(c) \subset T M$ such that $\dot{c}=\xi \circ c$. Then

$$
\begin{gathered}
\varphi_{*} \circ c=\varphi_{* *} \circ \dot{c}=\varphi_{* *} \circ \xi \circ c= \\
=\varphi_{* *} \circ \xi \circ \varphi_{*}^{-1} \circ \varphi_{*} \circ c=\left(\varphi_{*}\right)_{\#} \xi \circ \varphi_{*} \circ c
\end{gathered}
$$

so for all $t \in I$ we have

$$
\begin{gathered}
\left(D_{\varphi_{*} \circ c}\left(\varphi_{\#} \widetilde{Y}\right) \circ\left(\varphi_{*} \circ c\right)\right)(t)=D_{\stackrel{\varphi_{*} \circ c}{ }(t)} \varphi_{\#} \widetilde{Y}= \\
=D_{\left(\varphi_{*}\right) \# \xi \circ\left(\varphi_{*} \circ c\right)(t)} \varphi_{\#} \widetilde{Y}=\left(D_{\left(\varphi_{*}\right) \# \xi}\left(\varphi_{\#} \widetilde{Y}\right)\right)\left(\varphi_{*} \circ c\right)(t) \stackrel{\text { cond. }}{=} \\
=\left(\varphi_{*} \times \varphi_{*}\right) \circ D_{\xi} \widetilde{Y} \circ \varphi_{*}^{-1} \circ \varphi_{*} \circ c(t)=\left(\varphi_{*} \times \varphi_{*}\right) D_{\xi} \widetilde{Y}(c(t))= \\
=\left(\varphi_{*} \times \varphi_{*}\right) D_{\xi(c(t))} \widetilde{Y}=\left(\varphi_{*} \times \varphi_{*}\right)\left(D_{\dot{c}(t)} \widetilde{Y}\right)= \\
=\left(\varphi_{*} \times \varphi_{*}\right)\left(D_{c}(\widetilde{Y} \circ c)\right)(t) ;
\end{gathered}
$$

thus relation (13) is valid.
(b) Conversely, suppose relation (13) is true. It is enough to show that for all $z \in T T M, \widetilde{Y} \in \operatorname{Sec}\left(\tau^{*} \tau\right)$ we have

$$
\left(\varphi_{*} \times \varphi_{*}\right) D_{z} \widetilde{Y}=D_{\varphi_{* *}(z)} \varphi_{\#} \widetilde{Y}
$$

If $z \in T_{v} T M$, choose a vector field $\xi \in \mathfrak{X}(T M)$ such that $\xi(v)=z$. Let $c: I \rightarrow T M$ be the integral curve of ξ starting from v. Then

$$
\xi \circ c=\dot{c}, \quad z=\xi(v)=\xi(c(0))=\dot{c}(0),
$$

so

$$
\begin{gathered}
\left(\varphi_{*} \times \varphi_{*}\right) D_{z} \widetilde{Y}=\left(\varphi_{*} \times \varphi_{*}\right) D_{\dot{c}(0)} \widetilde{Y}=\left(\varphi_{*} \times \varphi_{*}\right)\left(D_{c}(\widetilde{Y} \circ c)\right)(0) \stackrel{(13)}{=} \\
=\left(D_{\varphi_{*} \circ c}\left(\varphi_{\#} \widetilde{Y}\right) \circ\left(\varphi_{*} \circ c\right)\right)(0)=D_{\sqrt{\varphi_{*} \circ c(0)}} \varphi_{\#} \widetilde{Y}= \\
=D_{\varphi_{* *}(\dot{c}(0))} \varphi_{\#} \widetilde{Y}=D_{\varphi_{* *}(z)} \varphi_{\#} \widetilde{Y}
\end{gathered}
$$

as was to be shown.

Corollary 5.5 If (M, D) is a line element D-manifold, $\varphi \in \operatorname{Aut}(D)$ and $\gamma: I \rightarrow M$ is a curve whose acceleration field is extendible, then

$$
\begin{equation*}
D_{\stackrel{\dot{\varphi} \circ \gamma}{ }}\left(\varphi_{\#} \widetilde{Y}\right) \circ \stackrel{\dot{\varphi \circ \gamma}}{ }=\left(\varphi_{*} \times \varphi_{*}\right) D_{\dot{\gamma}}(\widetilde{Y} \circ \dot{\gamma}) . \tag{14}
\end{equation*}
$$

Theorem 5.6 Let (M, D) be a regular line element D-manifold, \mathcal{H}_{D} be the Ehresmann connection induced by $D, \varphi \in \operatorname{Diff}(M) . \varphi$ is an automorphism of D if and only if the following three conditions are satisfied:
a) φ is an automorphism of the induced Ehresmann connection \mathcal{H}_{D},
b) $\varphi_{\#} \circ \mathcal{S}=\mathcal{S} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)$,
c) $\varphi_{\#} \circ \mathcal{P}=\mathcal{P} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)$.

Proof. Suppose that $\varphi \in \operatorname{Aut}(D)$. Then for any vector field X on M we have

$$
\begin{aligned}
& \varphi_{* *} \circ \mathcal{H}_{D} \circ\left(\varphi_{*}^{-1} \times \varphi_{*}^{-1}\right)(\widehat{X})=\varphi_{* *} \circ \mathcal{H}_{D} \circ\left(\varphi_{*}^{-1}, \varphi_{*}^{-1} \circ X \circ \tau\right)= \\
&= \varphi_{* *} \circ \mathcal{H}_{D} \circ\left(\varphi_{*}^{-1}, \varphi_{*}^{-1} \circ X \circ \varphi \circ \varphi^{-1} \circ \tau\right)= \\
&=\varphi_{* *} \circ \mathcal{H}_{D} \circ\left(\varphi_{*}^{-1}, \varphi_{\#}^{-1} X \circ \tau \circ \varphi_{*}^{-1}\right)= \\
&=\varphi_{* *} \circ \mathcal{H}_{D} \circ \widehat{\varphi_{\#}^{-1} X} \circ \varphi_{*}^{-1}=\left(\varphi_{*}\right)_{\#} \circ \mathcal{H}_{D} \circ \widehat{\varphi_{\#}^{-1} X}= \\
&=\left(\varphi_{*}\right)_{\#} \circ\left(\left(\varphi_{\#}^{-1} X\right) X^{\mathrm{c}}-\mathbf{i}\left(\mu^{\vee}\right)^{-1} D_{\left(\varphi_{\#}^{-1} X\right)^{c}} \delta\right)= \\
&=\left(\varphi_{*}\right)_{\#}\left(\left(\varphi_{*}^{-1}\right)_{\#} X^{\mathrm{c}}-\mathbf{i}\left(\mu^{\vee}\right)^{-1} D_{\left(\varphi_{*}^{-1}\right)_{\#} X^{c}} \varphi_{\#}^{-1} \delta\right) \stackrel{\text { cond. }}{=} \\
&=X^{\mathrm{c}}-\left(\varphi_{*}\right)_{\#} \circ \mathbf{i} \circ\left(\mu^{\vee}\right)^{-1} \circ \varphi_{\#}^{-1} D_{X^{\wedge}} \delta= \\
&=X^{\mathrm{c}}-\mathbf{i} \circ \varphi_{\#} \circ\left(\mu^{\vee}\right)^{-1} \circ \varphi_{\#}^{-1} \circ D_{X^{\mathrm{c}}} \delta \stackrel{(12)}{=} \\
&=X^{\mathrm{c}}-\mathbf{i} \circ\left(\mu^{\vee}\right)^{-1} \circ \varphi_{\#} \circ \varphi_{\#}^{-1} \circ D_{X^{\mathrm{c}}} \delta=\mathcal{H}_{D}(\widehat{X}),
\end{aligned}
$$

hence $\varphi \in \operatorname{Aut}\left(\mathcal{H}_{D}\right)$, so a) is true.
Now we check that \mathcal{S} and \mathcal{P} are invariant under φ. Let X and Y be vector
fields on M. Then, on the one hand,

$$
\begin{gathered}
\varphi_{\#}(\mathcal{S}(\widehat{X}, \widehat{Y}))=-\varphi_{\#}\left(D_{Y^{\vee}} \widehat{X}\right)-\varphi_{\#} \circ \mathbf{j}\left[X^{\mathrm{h}}, Y^{\mathrm{v}}\right] \stackrel{\text { cond. }}{=} \\
=-D_{\left(\varphi_{*}\right) \neq Y^{\vee}} \varphi_{\#} \widehat{X}-\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} X^{\mathrm{v}}\right] \stackrel{\text { a) }}{=} \\
=-D_{\left(\varphi_{\#} Y\right)^{\vee}} \varphi_{\#} X-\mathbf{j}\left[\left(\varphi_{\#} X\right)^{\mathrm{h}},\left(\varphi_{\#} X\right)^{\vee}\right]= \\
=\mathcal{S}\left(\widehat{\varphi_{\#} X}, \widehat{\varphi_{\#} Y}\right)=\mathcal{S}\left(\varphi_{\#} \widehat{X}, \varphi_{\#} \widehat{Y}\right) .
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
\varphi_{\#}(\mathcal{P}(\widehat{X}, \widehat{Y}))=\varphi_{\#}\left(D_{X^{\vee}} Y\right)-\varphi_{\#} \circ \mathcal{V}\left[X^{\mathrm{h}}, Y^{\mathrm{v}}\right] \stackrel{\text { cond. }}{=} \\
=D_{\left(\varphi_{*}\right) \# X^{\mathrm{h}}} \varphi_{\#} \widehat{Y}-\varphi_{\#} \circ \mathcal{V}\left[X^{\mathrm{h}}, Y^{\mathrm{v}}\right] \stackrel{\mathrm{a})}{=} \\
=D_{\left(\varphi_{\#} X\right)^{\mathrm{h}}} \widehat{\varphi_{\#} Y}-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{v}}\right]= \\
=D_{\left(\varphi_{\#} X\right)^{\mathrm{h}}} \varphi_{\#} \widehat{Y}-\mathcal{V}\left[\left(\varphi_{\#} X\right)^{\mathrm{h}},\left(\varphi_{\#} Y\right)^{\mathrm{v}}\right]= \\
=\mathcal{P}\left(\widehat{\varphi_{\#} X}, \widehat{\varphi_{\#} Y}\right)=\mathcal{P}\left(\varphi_{\#} \widehat{X}, \varphi_{\#} \widehat{Y}\right),
\end{gathered}
$$

as we claimed.
Conversely, suppose that conditions a), b) and c) are satisfied. Let X be a vector field on M. Then

$$
\begin{gathered}
\varphi_{\#} \circ \mathcal{S}(\widehat{X}, \widehat{Y})=-\varphi_{\#}\left(D_{Y^{\vee}} \widehat{X}\right)-\varphi_{\#} \circ \mathbf{j}\left[X^{\mathrm{h}}, Y^{\mathrm{v}}\right]= \\
=-\varphi_{\#}\left(D_{Y^{\vee}} \widehat{X}\right)-\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{v}}\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\mathcal{S} \circ\left(\varphi_{\#} \widehat{X}, \varphi_{\#} \widehat{Y}\right)=-D_{\left(\varphi_{\#} Y\right) \vee} \varphi_{\#} \widehat{X}-\mathbf{j}\left[\left(\varphi_{\#} X\right)^{\mathrm{h}},\left(\varphi_{\#} Y\right)^{\vee}\right] \stackrel{\mathrm{a})}{=} \\
=-D_{\left(\varphi_{*}\right) \neq Y^{\vee}} \varphi_{\#} \widehat{X}-\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{v}}\right],
\end{gathered}
$$

so by condition b) we have

$$
\begin{equation*}
\varphi_{\#}\left(D_{Y^{\vee}} \widehat{X}\right)=D_{\left(\varphi_{*}\right)_{\#} Y^{\vee}} \varphi_{\#} \widehat{X} \tag{*}
\end{equation*}
$$

Similarly,

$$
\begin{gathered}
\varphi_{\#} \circ \mathcal{P}(\widehat{X}, \widehat{Y})=\varphi_{\#}\left(D_{X^{\mathrm{h}}} \widehat{Y}\right)-\varphi_{\#} \circ \mathcal{V}\left[X^{\mathrm{h}}, Y^{\mathrm{\vee}}\right] \stackrel{\mathrm{a})}{=} \\
=\varphi_{\#}\left(D_{X^{\mathrm{h}}} \widehat{Y}\right)-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{\vee}}\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\mathcal{P}\left(\varphi_{\#} \widehat{X}, \varphi_{\#} \widehat{Y}\right)=D_{\left(\varphi_{\#} X\right)^{\mathrm{h}}} \varphi_{\#} \widehat{Y}-\mathcal{V}\left[\left(\varphi_{\#} X\right)^{\mathrm{h}},\left(\varphi_{\#} Y\right)^{\mathrm{v}}\right] \stackrel{\text { cond. }}{=} \\
=D_{\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}}} \varphi_{\#} \widehat{Y}-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{v}}\right]
\end{gathered}
$$

hence condition c) implies

$$
\begin{equation*}
\varphi_{\#}\left(D_{X^{\mathrm{h}}} \widehat{Y}\right)=D_{\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}}} \varphi_{\#} \widehat{Y} \tag{**}
\end{equation*}
$$

From $(*)$ and $(* *)$ it follows that

$$
\begin{equation*}
\varphi_{\#}\left(D_{\xi} \widehat{Y}\right)=D_{\left(\varphi_{*}\right)_{\#} \xi} \varphi_{\#} \widehat{Y} \tag{+}
\end{equation*}
$$

for all $\xi \in \mathfrak{X}(T M), Y \in \mathfrak{X}(M)$, thus the invariance of D under φ is valid over the basic vector fields. To complete our argument, we have to show that for any function $F \in C^{\infty}(T M)$,

$$
(++) \quad \varphi_{\#}\left(D_{\xi}(F \widehat{Y})\right)=D_{\left(\varphi_{*}\right) \# \xi} \varphi_{\#} F \widehat{Y}
$$

The left-hand side of $(++)$ can be transformed as follows:

$$
\begin{gathered}
\varphi_{\#}\left(D_{\xi}(F \widehat{Y})\right)=\varphi_{\#}\left((\xi F) \widehat{Y}+F D_{\xi} \widehat{Y}\right)= \\
=\left((\xi F) \circ \varphi_{*}^{-1}\right) \varphi_{\#} \widehat{Y}+\left(F \circ \varphi_{*}^{-1}\right) \varphi_{\#}\left(D_{\xi} \widehat{Y}\right),
\end{gathered}
$$

while the right-hand side of $(++)$ is

$$
D_{\left(\varphi_{*}\right)_{\#} \xi} \varphi_{\#}(F \widehat{Y})=\left(\varphi_{*}\right)_{\#} \xi\left(F \circ \varphi_{*}^{-1}\right) \varphi_{\#} \widehat{Y}+\left(F \circ \varphi_{*}^{-1}\right) D_{\left(\varphi_{*}\right)_{\#} \xi} \varphi_{\#} \widehat{Y}
$$

Since

$$
(\xi F) \circ \varphi_{*}^{-1}=\left(\varphi_{*}\right)_{\#} \xi\left(F \circ \varphi_{*}^{-1}\right),
$$

we obtain the desired equality.

Proposition 5.7 If (M, D) is a regular line element D-manifold, then

$$
\begin{equation*}
\operatorname{Aut}(D) \subset \operatorname{Aff}(D) \tag{15}
\end{equation*}
$$

Proof. Let $\gamma: I \rightarrow M$ be a geodesic of D. Then $D_{\ddot{\gamma}(t)} \delta=0$ for all $t \in I$. Let φ be an automorphism of D. We show that

$$
D_{\stackrel{.}{\varphi \circ \gamma}(t)} \delta=0, \quad t \in I ;
$$

hence $\varphi \circ \gamma$ is also a geodesic of D, therefore $\varphi \in \operatorname{Aff}(D)$.
Let \mathbf{h} be the horizontal projector associated to \mathcal{H}_{D}. Then $\mathbf{h} \circ \ddot{\gamma}=\ddot{\gamma}$ (since γ is also a geodesic of \mathcal{H}_{D} by Lemma 5.1), and hence

$$
\varphi_{* *} \circ \ddot{\gamma}(t)=\varphi_{* *} \circ \mathbf{h} \circ \ddot{\gamma}(t) \stackrel{5.6}{=} \mathbf{h} \circ \varphi_{* *} \circ \ddot{\gamma}(t) .
$$

Thus

$$
\begin{aligned}
& D_{\overline{\varphi \circ \gamma \gamma}(t)} \delta=D_{\varphi_{* *} \circ \ddot{\gamma}(t)} \delta=D_{\mathbf{h} \circ \varphi_{* * *} \circ \ddot{\gamma}(t)} \delta=D_{\mathcal{H}_{D \circ \mathbf{j} \delta \bar{\varphi} \circ \bar{\gamma}(t)}} \delta= \\
& =\left(D \delta \circ \mathcal{H}_{D}\right)(\mathbf{j} \circ \stackrel{\ddot{\varphi \circ \gamma}}{ }(t))=\mu^{\mathcal{H}_{D}}(\mathbf{j} \circ \stackrel{\ddot{\varphi \circ \gamma}(t)}{ } \stackrel{4.1}{=} 0,
\end{aligned}
$$

since the \mathcal{H}_{D}-deflection of D vanishes by Theorem 4.1.

Theorem 5.8 Let (M, D) be a regular line element D-manifold and $\varphi \in \operatorname{Diff}(M) . \varphi \in \operatorname{Aut}(D)$ if and only if the following four conditions are satisfied:
a) $\varphi \in \operatorname{Aff}(D)$,
b) $\varphi_{\#} \circ \mathbf{T}^{\mathbf{s}}=\mathbf{T}^{\mathbf{s}} \circ \varphi_{\#}$,
c) $\varphi_{\#} \circ \mathcal{S}=\mathcal{S} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)$,
d) $\varphi_{\#} \circ \mathcal{P}=\mathcal{P} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)$
($\mathbf{T}^{\mathbf{s}}$ is the strong torsion of the induced Ehresmann connection \mathcal{H}_{D}).
Proof. (1) Suppose that $\varphi \in \operatorname{Aut}(D)$. Then, by 5.6 , conditions c) and d) are satisfied and $\varphi \in \operatorname{Aut}\left(\mathcal{H}_{D}\right)$. By 3.3, we have condition b) and $\varphi \in \operatorname{Aut}\left(S_{\mathcal{H}_{D}}\right)$. Finally,

$$
\varphi \in \operatorname{Aut}\left(S_{\mathcal{H}_{D}}\right) \stackrel{3.1}{\Longleftrightarrow} \varphi \in \operatorname{Aff}\left(S_{\mathcal{H}_{D}}\right) \stackrel{3.2}{\Longleftrightarrow} \varphi \in \operatorname{Aff}\left(\mathcal{H}_{D}\right) \stackrel{(10)}{\Longleftrightarrow} \varphi \in \operatorname{Aff}(D),
$$

so we get condition a).
(2) Conversely, we suppose that relations a)-d) hold. Then $\varphi \in \operatorname{Aff}(D)$ (condition a)) is equivalent to $\varphi \in \operatorname{Aff}\left(S_{\mathcal{H}_{D}}\right)$. By $\varphi \in \operatorname{Aff}\left(S_{\mathcal{H}_{D}}\right)$, condition b) and Theorem 3.3 we have $\varphi \in \operatorname{Aut}\left(\mathcal{H}_{D}\right)$. By $\varphi \in \operatorname{Aut}\left(\mathcal{H}_{D}\right)$, conditions c) and d) and Theorem 5.6 it follows that $\varphi \in \operatorname{Aut}(D)$.

Corollary 5.9 Let (M, D) be a regular line element D-manifold and $\varphi \in \operatorname{Diff}(M) . \varphi$ is an automorphism of D if and only if the following conditions are satisfied:
a) $\varphi \in \operatorname{Aff}(D)$,
b') $\varphi_{\#} \circ i_{\delta} \mathcal{T}=i_{\delta} \mathcal{T} \circ \varphi_{\#}$,
c) $\varphi_{\#} \circ \mathcal{S}=\mathcal{S} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)$,
d) $\varphi_{\#} \circ \mathcal{P}=\mathcal{P} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)$.

Proof. We have only to prove that condition b) in 5.8 is equivalent to condition b^{\prime}). First suppose that condition b) (and d)) of Theorem 5.8 hold. Then for every vector fields $X, Y \in \mathfrak{X}(M)$,

$$
\begin{gathered}
\varphi_{\#} \circ i_{\delta} \mathcal{T}(\widehat{X}) \stackrel{(7)}{=} \varphi_{\#} \circ\left(\mathbf{T}^{\mathbf{s}}(\widehat{X})+i_{\delta} \mathcal{P}(\widehat{X})\right) \stackrel{\text { cond. }}{=} \\
=\mathbf{T}^{\mathbf{s}}\left(\varphi_{\#} \widehat{X}\right)+\mathcal{P}\left(\varphi_{\#} \delta, \varphi_{\#} \widehat{X}\right) \stackrel{(2)}{=} \mathbf{T}^{\mathbf{s}}\left(\varphi_{\#} \widehat{X}\right)+i_{\delta} \mathcal{P}\left(\varphi_{\#} \widehat{X}\right) \stackrel{(7)}{=} i_{\delta} \mathcal{T} \circ \varphi_{\#}(\widehat{X}) ;
\end{gathered}
$$

so we have condition b^{\prime}).
Conversely, if conditions b') (and d)) of Theorem 5.9 are valid, then for any vector field $X \in \mathfrak{X}(M)$,

$$
\begin{aligned}
& \varphi_{\#} \mathbf{T}^{\mathbf{s}}(\widehat{X}) \stackrel{(7)}{=} \varphi_{\#}\left(i_{\delta} \mathcal{T}(\widehat{X})-i_{\delta} \mathcal{P}(\widehat{X})\right) \stackrel{\left.b^{\prime}\right)}{=} \\
= & i_{\delta} \mathcal{T}\left(\varphi_{\#} \widehat{X}\right)-i_{\delta} \mathcal{P}\left(\varphi_{\#} \widehat{X}\right)=\mathbf{T}^{\mathbf{s}} \circ \varphi_{\#}(\widehat{X}),
\end{aligned}
$$

so we get 5.8(b).

Theorem 5.10 Let (M, D) be a regular line element D-manifold. A diffeomorphism $\varphi: M \rightarrow M$ is an automorphism of the covariant derivative D if and only if the following conditions are satisfied:
A) $\varphi \in \operatorname{Aff}(D)$,
B) $\varphi_{\#} \circ T^{\vee}(D)=T^{\vee}(D) \circ\left(\left(\varphi_{*}\right)_{\#} \times\left(\varphi_{*}\right)_{\#}\right)$,
C) $\varphi_{\#} \circ T(D)=T(D) \circ\left(\left(\varphi_{*}\right)_{\#} \times\left(\varphi_{*}\right)_{\#}\right)$.

Proof. Necessity. Suppose that $\varphi \in \operatorname{Aut}(D)$. Then $\varphi \in \operatorname{Aff}(D)$. We show that conditions B) and C) hold. To do this, we evaluate the left-hand side and the right-hand side of these relations on pairs of the form $\left(X^{\vee}, Y^{\mathrm{v}}\right),\left(X^{\mathrm{v}}, Y^{\mathrm{h}}\right)$ and ($X^{\mathrm{h}}, Y^{\mathrm{h}}$) where $X, Y \in \mathfrak{X}(M)$.
Checking of B)

$$
\begin{aligned}
& \varphi_{\#} \circ T(D)\left(X^{\vee}, Y^{\vee}\right)=\varphi_{\#}\left(D_{X^{\vee}} \mathbf{j} Y^{\vee}-D_{Y^{\vee}} \mathbf{j} X^{\vee}-\mathbf{j}\left[X^{\vee}, Y^{\vee}\right]\right)=0, \\
& T(D)\left(\left(\varphi_{*}\right)_{\#} X^{\vee},\left(\varphi_{*}\right)_{\#} Y^{\vee}\right)=D_{\left(\varphi_{*}\right)_{\#} X^{\vee} \mathbf{j}\left(\varphi_{*}\right)_{\#} Y^{\vee}-D_{\left(\varphi_{*}\right)_{\#} Y^{\vee}} \mathbf{j}\left(\varphi_{*}\right)_{\#} X^{\vee}-} \\
& -\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{v}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{v}}\right]=D_{\left(\varphi_{\#} X\right)^{\vee} \mathbf{v}} \mathbf{j}\left(\varphi_{\#} Y\right)^{\mathrm{v}}- \\
& -D_{\left(\varphi_{\#} Y\right)^{\vee} \mathbf{v}}\left(\varphi_{\#} X\right)^{\vee}-\mathbf{j}\left[\left(\varphi_{\#} X\right)^{\mathrm{v}},\left(\varphi_{\#} Y\right)^{\mathrm{v}}\right]=0 ; \\
& \varphi_{\#} \circ T(D)\left(X^{\vee}, Y^{\mathrm{h}}\right)=\varphi_{\#}\left(D_{X^{\vee}} \widehat{Y}-\mathbf{j}\left[X^{\vee}, Y^{\mathrm{h}}\right]\right)=\varphi_{\#} D_{X^{\vee}} \widehat{Y} \stackrel{\text { cond }}{=} \\
& =D_{\left(\varphi_{*}\right) \# X^{\vee}} \varphi_{\#} \widehat{Y}, \\
& T(D)\left(\left(\varphi_{*}\right)_{\#} X^{\vee},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right)=D_{\left(\varphi_{*}\right)_{\#} X^{\vee} \mathbf{j} \circ\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}-D_{\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}} \mathbf{j}\left(\varphi_{*}\right)_{\#} X^{\vee}-} \\
& -\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{v}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right] \stackrel{5.6}{=} D_{\left(\varphi_{*}\right) \# X^{\vee}} \varphi_{\#} \widehat{Y}- \\
& -\mathbf{j}\left[\left(\varphi_{\#} X\right)^{v},\left(\varphi_{\#} Y\right)^{\mathrm{h}}\right]=D_{\left(\varphi_{*}\right)_{\#} X^{\vee}} \varphi_{\#} \widehat{Y} . \\
& \varphi_{\#} \circ T(D)\left(X^{\mathrm{h}}, Y^{\mathrm{h}}\right)=\varphi_{\#}\left(D_{X^{\mathrm{h}}} \widehat{Y}-D_{Y^{\mathrm{h}}} \widehat{X}-\mathbf{j}\left[X^{\mathrm{h}}, Y^{\mathrm{h}}\right]\right) \stackrel{\text { cond. }}{=} \\
& =D_{\left(\varphi_{*}\right) \# X^{\mathrm{h}}} \varphi_{\#} \widehat{Y}-D_{\left(\varphi_{*}\right) \# Y^{\mathrm{n}}} \varphi_{\#} \widehat{X}- \\
& -\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right] \text {, } \\
& T(D)\left(\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right)=D_{\left(\varphi_{*}\right) \#} X^{\mathrm{h}} \mathbf{j} \circ\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}-D_{\left(\varphi_{*}\right) \#} Y^{\mathrm{h}} \mathbf{j} \circ\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}}- \\
& -\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right]=D_{\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}}} \widehat{Y}- \\
& -D_{\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}} \widehat{X}-\mathbf{j}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right] .
\end{aligned}
$$

Checking of C)

$$
\begin{aligned}
& \varphi_{\#} T^{\vee}(D)\left(X^{\vee}, Y^{\vee}\right)=\varphi_{\#}\left(D_{X^{\vee}} \mathcal{V} Y^{\vee}-D_{Y^{\vee}} \mathcal{V} X^{\vee}-\mathcal{V}\left[X^{\vee}, Y^{\vee}\right]\right) \stackrel{\text { cond. }}{=} \\
& =D_{\left(\varphi_{*}\right)_{\#} X^{\vee}} \varphi_{\#} \widehat{Y}-D_{\left(\varphi_{*}\right)_{\#} Y^{\vee}} \widehat{X}, \\
& T^{\vee}(D)\left(\left(\varphi_{*}\right)_{\#} X^{\vee},\left(\varphi_{*}\right)_{\#} Y^{\vee}\right)=D_{\left(\varphi_{*}\right)_{\#} X^{\vee}} \mathcal{V}\left(\varphi_{*}\right)_{\#} Y^{\vee}-D_{\left(\varphi_{*}\right)_{\#} Y^{\vee}} \mathcal{V}\left(\varphi_{*}\right)_{\#} X^{\vee}- \\
& -\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\vee},\left(\varphi_{*}\right)_{\#} Y^{\vee}\right]=D_{\left(\varphi_{*}\right)_{\#} X^{\vee}} \mathcal{V} \circ \mathbf{i} \circ \varphi_{\#} Y- \\
& -D_{\left(\varphi_{*}\right)_{\#} Y^{\vee}} \mathcal{V} \circ \mathbf{i} \circ \varphi_{\#} X-\mathcal{V}\left[\left(\varphi_{\#} X\right)^{\vee},\left(\varphi_{\#} Y\right)^{\vee}\right]= \\
& =D_{\left(\varphi_{*}\right) \# X^{\vee}} \varphi_{\#} \widehat{Y}-D_{\left(\varphi_{*}\right) \# Y^{\vee}} \widehat{X} . \\
& \varphi_{\#} \circ T^{\vee}(D)\left(X^{\vee}, Y^{\mathrm{h}}\right)=\varphi_{\#}\left(-D_{Y^{\mathrm{h}}} \widehat{X}-\mathcal{V}\left[X^{\vee}, Y^{\mathrm{h}}\right]\right) \stackrel{5.6, \text { cond. }}{=} \\
& =-D_{\left(\varphi_{*}\right) \#} Y^{\mathrm{h}} \varphi_{\#} \widehat{X}-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{V}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right], \\
& T^{\vee}(D)\left(\left(\varphi_{*}\right)_{\#} X^{\vee},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right)=D_{\left(\varphi_{*}\right)_{\#} X^{\vee}} \mathcal{V} \circ\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}-D_{\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}} \mathcal{V} \circ\left(\varphi_{*}\right)_{\#} X^{\mathrm{\vee}}- \\
& -\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{v}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right] \stackrel{5.6}{=}-D_{\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}} \varphi_{\#} \widehat{X}- \\
& -\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\vee},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right] . \\
& \varphi_{\#} \circ T^{\mathrm{V}}(D)\left(X^{\mathrm{h}}, Y^{\mathrm{h}}\right)=\varphi_{\#}\left(-\mathcal{V}\left[X^{\mathrm{h}}, Y^{\mathrm{h}}\right]\right) \stackrel{5.6}{=}-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right], \\
& T^{\vee}(D)\left(\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right)=D_{\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}}} \mathcal{\nu} \circ\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}- \\
& -D_{\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}} \mathcal{V} \circ\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}}-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right]= \\
& =-\mathcal{V}\left[\left(\varphi_{*}\right)_{\#} X^{\mathrm{h}},\left(\varphi_{*}\right)_{\#} Y^{\mathrm{h}}\right] .
\end{aligned}
$$

Sufficiency. Conditions A)-C) imply immediately that

$$
\begin{gathered}
\varphi_{\#} \circ i_{\delta} \mathcal{T}=i_{\delta} \mathcal{T} \circ \varphi_{\#}, \\
\varphi_{\#} \circ \mathcal{S}=\mathcal{S} \circ\left(\varphi_{\#} \times \varphi_{\#}\right) \\
\varphi_{\#} \circ \mathcal{P}=\mathcal{P} \circ\left(\varphi_{\#} \times \varphi_{\#}\right)
\end{gathered}
$$

since all of the torsions $\mathcal{T}, \mathcal{S}, \mathcal{P}$ can be obtained from $T^{\mathrm{v}}(D)$ or $T(D)$ (see (3), (6), (8)), so, by 5.9, the sufficiency follows.

References

[1] J.-G. Diaz, Etude des tenseurs de courbure en géométrie finslérienne, Thése de 3éme cycle, 118 (1972).
[2] M. Hashiguchi, On parallel displacements in Finsler spaces, J. Math. Soc. Japan, 10 (4) (1958), 365-379.
[3] S. Lang, Fundamentals of Differential Geometry, Springer-Verlag (New York, 2001).
[4] R. L. Lovas, J. Pék and J. Szilasi, Ehresmann connections, metrics and good metric derivatives, Advanced Studies in Pure Mathematics, 48 (2007), Finsler Geometry, Sapporo 2005 - In Memory of Makoto Matsumoto, 263308.
[5] J. Pék and J. Szilasi, Automorphisms of Ehresmann connections, Acta Math. Hungar., 123 (2009), 379-395.
[6] Gy. Soós, Über Gruppen von Automorphismen in affinzusammenhängenden Räumen von Linienelementen, Publ. Math. Debrecen, 4 (1956), 249-302.
[7] J. Szilasi, A Setting for Spray and Finsler Geometry, In: P. L. Antonelli (ed.): Handbook of Finsler Geometry, Vol.2, Kluwer Academic Publishers (Dordrecht, 2003) 1182-1426.
[8] J. Szilasi, Calculus along the tangent bundle projection and projective metrizability, In: Differential Geometry and its Applications - Proceedings of the 10th International Conference on DGA2007, World Scientific (Singapore, 2008), 527-546.
[9] L. Tamássy, Zur Metrisierbarkeit der affinzusammenhängenden Räum, Demonstratio Mathematica, VI (1973), 851-859.
[10] O. Varga, Über affinzusammenhängende Mannigfaltigkeiten von Linienelementen insbesondere deren Äquivalenz, Publ. Math. Debrecen, 1 (1949), 7-17.
[11] J. Vilms, Totally geodesic maps, J. Differential Geometry, 4 (1970), 73-79.

[^0]: Key words and phrases: line element D-manifold, automorphism, affinity, Ehresmann connection.

 2000 Mathematics Subject Classification: 53C05, 53C22

